We analyze the charge and spin distributions induced in an interacting electron system confined inside a semiconductor quantum wire with spin orbit interaction in the presence of an external magnetic field. The wire, assumed to be infinitely long, is obtained through lateral confinement in three different materials: GaAs, InAs, and InSb. The spin-orbit coupling, linear in the electron momentum is of both Rashba and Dresselhaus type. Within the Hartree-Fock approximation the many-body Hamiltonian is diagonalized directly and its eigenfunctions and single-particle spectra are obtained selfconsistently. Further, we calculate charge, and spin densities, as well as the charge and spin currents and compare them with those obtained in the absence of the interaction. Thus we observe an enhancement of the spin polarization associated with the spin-orbit intreractions, on account of the exchange Coulomb effects, in GaAs, but not in InAs and InSb. However, in the later materials the direct Coulomb interaction may amplify or modify the spin currents.
@article{bwmeta1.element.doi-10_2478_nsmmt-2012-0002, author = {Anton Heidar Thorolfsson and Andrei Manolescu and D.C. Marinescu and Vidar Gudmundsson}, title = {Coulomb Interaction Effects on the Spin Polarization and Currents in Quantum Wires with Spin Orbit Interaction}, journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications}, volume = {1}, year = {2012}, pages = {23-37}, zbl = {1273.82084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2012-0002} }
Anton Heidar Thorolfsson; Andrei Manolescu; D.C. Marinescu; Vidar Gudmundsson. Coulomb Interaction Effects on the Spin Polarization and Currents in Quantum Wires with Spin Orbit Interaction. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 1 (2012) pp. 23-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2012-0002/
Y. A. Bychkov and I. E. Rashba, Oscillatory effects and the magnetic-susceptibility of carriers in inversion-layers, J. Phys. C 17(33), 6039-6045 (1984).
G. Dresselhaus, A. F. Kip and C. Kittel, Cyclotron resonance of electrons and holes in Silicon and Germanium Crystals, Phys. Rev. 98, 368–384 (1955).
M. Governale and U. Zülicke, Spin accumulation in quantum wires with strong Rashba spin-orbit coupling, Phys. Rev. B 66, 073311 (2002).
J. Schliemann, J. C. Egues, and D. Loss, Nonballistic spin-field-effect transistor, Phys. Rev. Lett. 90, 146801 (2003). [PubMed]
D. S. Saraga and D. Loss, Fermi liquid parameters in two dimensions with spin-orbit interaction, Phys. Rev. B 72, 195319 (2005).
S. Chesi and G. F. Giuliani, High-density limit of the two-dimensional electron liquid with Rashba spin-orbit coupling, Phys. Rev. B 83, 235309 (2011).
X. F. Wang, Plasmon spectrum of two-dimensional electron systems with Rashba spin-orbit interaction, Phys. Rev. B 72, 085317 (2005).
M. Pletyukhov and V. Gritsev, Screening in the two-dimensional electron gas with spin-orbit coupling, Phys. Rev. B 74, 045307 (2006).
S. H. Abedinpour, G. Vignale, and I. V. Tokatly, Gauge-invariant formulation of spin-current density-functional theory, Phys. Rev. B 81, 125123 (2010). [WoS]
S. Chesi and G. F. Giuliani, Two exact properties of the perturbative expansion for the two-dimensional electron liquid with Rashba or Dresselhaus spin-orbit coupling, Phys. Rev. B 83, 235308 (2011). [WoS]
A. Ambrosetti, F. Pederiva, E. Lipparini, and S. Gandolfi, Quantum Monte Carlo study of the two-dimensional electron gas in presence of Rashba interaction, Phys. Rev. B 80, 125306 (2009).
T. Ando and Y. Uemura, Theory of oscillatory g-factor in an mos inversion layer under strong magnetic-fields, J. Phys. Soc. Jpn. 37, 1044–1052 (1974).
A. Manolescu and R. R. Gerhardts, Exchange-enhanced spin splitting in a 2-dimensional electron-system with lateral modulation, Phys. Rev. B 51, 1703-1713 (1995).
A. Manolescu and R. R. Gerhardts, Coulomb effects on the quantum transport of a two-dimensional electron system in periodic electric and magnetic fields, Phys. Rev. B 56, 9707-9718 (1997).
S. Ihnatsenka and I. V. Zozoulenko, Spin polarization of edge states and the magnetosubband structure in quantum wires, Phys. Rev. B 73, 075331 (2006).
S. Ihnatsenka and I. V. Zozoulenko, Hysteresis and spin phase transitions in quantum wires in the integer quantum Hall regime, Phys. Rev. B 75, 035318 (2007).
B. Tanatar and D. M. Ceperley, Ground-state of the two-dimensional electron-gas, Phys. Rev. B 39, 5005-5016 (1989).
C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Correlation energy and spin polarization in the 2D electron gas, Phys. Rev. Lett. 88, 256601 (2002). [PubMed]
F. Malet, M. Pi, M. Barranco, L. Serra, and E. Lipparini, Exchange-correlation effects on quantum wires with spin-orbit interactions under the influence of in-plane magnetic fields, Phys. Rev. B 76, 115306 (2007). [WoS]
H. A. Engel, Rashba E. I., and Halperin, B. I., Out-of-plane spin polarization from in-plane electric and magnetic fields, Phys. Rev. Lett. 98, 036602 (2007). [PubMed]
I. Meinel, D. Grundler, D. Heitmann, A. Manolescu, V. Gudmundsson, W. Wegscheider, and M. Bichler, Enhanced magnetization at integer quantum Hall states, Phys. Rev. B 64, 121306 (2001).
E. Nakhmedov and O. Alekperov, Out-of-plane equilibrium spin current in a quasi-two-dimensional electron gas under in-plane magnetic field, Phys. Rev. B 85, 153302 (2012).
E. B. Sonin, Equilibrium spin currents in the Rashba medium, Phys. Rev. B 76, 033306 (2007). [WoS]
Y. E. Sherman, E. and J. Sinova, Physical limits of the ballistic and nonballistic spin-field-effect transistor: Spin dynamics in remote-doped structures, Phys. Rev. B 72, 075318 (2005).
C. P. Moca, D. C. Marinescu, and S. Filip, Spin Hall effect in a symmetric quantum well by a random Rashba field, Phys. Rev. B 77, 193302 (2008).
R. Winkler, Semiconductor nanostructures. Quantum states and electronic transport, Springer-Verlag, Berlin, Heidelberg, New York (2003).
T. Ihn, Spin orbit coupling effects in two-dimensional electron and hole systems (Oxford University Press, 2010).
V. Gudmundsson, R. R. Gerhardts, R. Johnston, and L. Schweitzer, Magnetic-field effects in a confined twodimensional electron-gas - a comparison between continuum and lattice model, Zeitschrift fur Physik B-Condensed Matter 70, 453-460 (1988).
U. Wulf, V. Gudmundsson, and R. R. Gerhardts, Screening properties of the two-dimensional electron-gas in the quantum hall regime, Phys. Rev. B 38, 4218–4230 (1988).
V. Gudmundsson, Screening of impurities in the quantum Hall regime, in Spectroscopy of Semiconductor Microstructures, NATO ASI Series B206, 517 Plenum Press (1989).
S. Gujarathi, M. Alam, K., and S. Pramanik, Magnetic-field-induced spin texture in a quantum wire with linear Dresselhaus spin-orbit coupling, Phys. Rev. B 85, 045413 (2012).
D.B. Chklovskii, Shklovskii, B.I., and L. I. Glazman, Electrostatics of edge channels, Phys. Rev. B 46, 4026-4034 (1992).
V. Sih, W.H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, Generating spin currents in semiconductors with the spin hall effect, Phys. Rev. Lett. 97, 096605 (2006). [PubMed]
S.I. Erlingsson, J. Schliemann, and D. Loss, Spin susceptibilities, spin densities, and their connection to spin currents, Phys. Rev. B 71, 035319 (2005).
P. Bruno and V.K. Dugaev, Equilibrium spin currents and the magnetoelectric effect in magnetic nanostructures, Phys. Rev. B 72, 241302R (2005). ·