Periodic Solutions for Nonlinear Evolution Equations with Non-instantaneous Impulses
Michal Fečkan ; JinRong Wang ; Yong Zhou
Nonautonomous Dynamical Systems, Tome 1 (2014), / Harvested from The Polish Digital Mathematics Library

In this paper, we consider periodic solutions for a class of nonlinear evolution equations with non-instantaneous impulses on Banach spaces. By constructing a Poincaré operator, which is a composition of the maps and using the techniques of a priori estimate, we avoid assuming that periodic solution is bounded like in [1-4] and try to present new sufficient conditions on the existence of periodic mild solutions for such problems by utilizing semigroup theory and Leray-Schauder's fixed point theorem. Furthermore, existence of a global compact connected attractor for the Poincaré operator is derived.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267050
@article{bwmeta1.element.doi-10_2478_msds-2014-0004,
     author = {Michal Fe\v ckan and JinRong Wang and Yong Zhou},
     title = {Periodic Solutions for Nonlinear Evolution Equations with Non-instantaneous Impulses},
     journal = {Nonautonomous Dynamical Systems},
     volume = {1},
     year = {2014},
     zbl = {1311.34094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2014-0004}
}
Michal Fečkan; JinRong Wang; Yong Zhou. Periodic Solutions for Nonlinear Evolution Equations with Non-instantaneous Impulses. Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2014-0004/

[1] J. H. Liu, Bounded and periodic solutions of differential equations in Banach space, Appl. Math. Comput., 65(1994), 141-150. | Zbl 0819.34041

[2] J. H. Liu, Bounded and periodic solutions of semilinear evolution equations, Dynam. Syst. Appl., 4(1995), 341-350. | Zbl 0833.34054

[3] J. H. Liu, Bounded and periodic solutions of finite delay evolution equations, Nonlinear Anal.:TMA, vol. 34(1998), 101-111. | Zbl 0934.34066

[4] J. H. Liu, T. Naito, N. V. Minh, Bounded and periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 286(2003), 705-712. | Zbl 1045.34052

[5] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc, 141(2013), 1641-1649. | Zbl 1266.34101

[6] M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219(2013), 6743-6749. | Zbl 1293.34019

[7] D. D. Bainov, P. S. Simeonov, Impulsive differential equations: periodic solutions and applications, New York, 1993. | Zbl 0815.34001

[8] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, vol.14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, Singapore, 1995.

[9] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, vol. 2 of Contemporary Mathematics and Its Applications, Hindawi, New York, NY, USA, 2006. | Zbl 1130.34003

[10] X. Xiang, N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal.:TMA, 18(1992), 1063-1070. | Zbl 0765.34057

[11] P. Sattayatham, S. Tangmanee, W. Wei, On periodic solutions of nonlinear evolution equations in Banach spaces, Journal of Mathematical Analysis and Applications, J. Math. Anal. Appl., 276(2002), 98-108. | Zbl 1029.34045

[12] J. Wang, X. Xiang, Y. Peng, Periodic solutions of semilinear impulsive periodic system on Banach space, Nonlinear Anal.:TMA, 71(2009), e1344-e1353.

[13] Z. Liu, Anti-periodic solutions to nonlinear evolution equations, J. Funct. Anal., 258(2011), 2026-2033.[WoS] | Zbl 1184.35184

[14] Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Funct. Anal., 261(2011), 1309-1324.[WoS] | Zbl 1233.34028

[15] P. Kokocki, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Math. Anal. Appl., 392(2012), 55-74. | Zbl 1275.34086

[16] N. U. Ahmed, Semigroup theory with applications to systems and control, vol.246, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Harlow, UK, 1991.

[17] J. K. Hale, Stability and gradient dynamical systems, Rev. Mat. Complut. 17(2003), 7-57. | Zbl 1070.37055

[18] J. K. Hale, Asymptotic behaviour of dissipative systems, AMS, Providence, Rhode Islans, 1988. | Zbl 0642.58013