We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial data are reasonably small
@article{bwmeta1.element.doi-10_2478_msds-2014-0003, author = {Albert N. Sandjo and C\'elestin Wafo Soh}, title = { Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p }, journal = {Nonautonomous Dynamical Systems}, volume = {1}, year = {2014}, zbl = {1288.35009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2014-0003} }
Albert N. Sandjo; Célestin Wafo Soh. Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p . Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2014-0003/
[1] H. Amann, Nonhomogeneous Linear and quasiliear Elliptic and Parabolic Boundary Value Problem, Function Spaces, Differential Operators and Nonlinear Analysis. H. J. Schmeisser, H. Triebel (editors), Teubner, Stuttgart, Leipzig, 1993, 9-126.
[2] H. Amann, Dynamic theory of quasilinear parabolic equations- II. Reation-difision systems., Difierential Integral Equations, Vol.3, 1990, 13-75.
[3] H. Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, Vol.89, Abstract linear theory, Birkhäuser Boston Inc.,Boston, MA, 1995. | Zbl 0819.35001
[4] G. Caristi and E. Mitidieri, Existence and nonexistence of globale solutions of higher-order parabolic problems with slow decay initial data, J. Math. Appl. 279 (2003), 710-722. | Zbl 1029.35109
[5] G. Dore, and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196, 2 (1987), 189-201. | Zbl 0615.47002
[6] C. M. Elliot, S. Zheng, On the Cahn Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), 339-357.
[7] H. Fujita, T. Kato, On the Navier-Stokes initial value problem., Arch. Rational Mech. Anal., 16 (1964), 269-315.[Crossref] | Zbl 0126.42301
[8] Y. Giga and T. Miyakawa , Solution in Lr of Navier-Stokes initial value problem, Arch. Rat. Mech. Anal., 89 (1985), 267-281.[Crossref] | Zbl 0587.35078
[9] Y. Giga , Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Difierential Equations 62 (1986), no. 2, 186-212. | Zbl 0577.35058
[10] L. Golubovic, A. Levandovsky, D. Moldovan, Interface dynamics and far-from equilibrium phase transitions in multilayer epitaxial growth and erosion on crystal surfaces: continuum theory insights, East Asian Journal on Applied Mathematics, 4 (2011), 297-371. | Zbl 1288.82044
[11] T. Halicioglu, P. J. White, Structures of microclusters: an atomistic approach with three-body interactions, Surface Science, 106 (1981), 45-50.
[12] T. Kato, Strong Lp solutions of the Navier-Stokes equations in Rm with applications, Math. Z. 187 (1984), 471-480. | Zbl 0545.35073
[13] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. (N.S.) 22 (1992), 127-155.[Crossref] | Zbl 0781.35052
[14] B. King, O. Stein, M. Winkler, A fourth-order parabolic eqaution modeling epitaxial thin film growth, J. Math. Anal. Appl. 286(2003), 459-490. | Zbl 1029.35110
[15] R. Lam, D. G. Vlachos, Multiscale model for epitaxial growth of films: growth mode transition, Phys. Rev. B, 64 (2001), 035401.
[16] N. H. de Leeuw, S. C. Parker, Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite and vaterite: an atomistic approach, J. Phys. Chem. B, 102 (1998), 2914-2922.
[17] T. S. Lo, R. Kohn, A new approach to continuum modeling of epitaxial growth: slope selection, coarsening, and the role of the uphill current, Phisica D: Nonlinear Phenomena, 161 (2002), 237-257. | Zbl 1041.82014
[18] C. Melcher, Well-posedness for a class of nonlinear fourth-order difiusion equations, Preprint.
[19] C. Miao, Weak Solution of class of nonlinear heat equation systems and application to the Navier-Stokes system, J. Difierential Equations, 61 (1986), 141-151.
[20] C. Miao, Time-Space Estimates of Solutions to General Semilinear Parabolic Equations, Tokio J. Math., Vol.24. No.1, (2001), 246-276. | Zbl 1106.35027
[21] C. Miao, B. Zhang, Cauchy Problem for semilinear parabolic Equations in Besov spaces, Houston Journal of Mathematics, Vol.30, No.3 (2004), 829-878. | Zbl 1056.35078
[22] C. Miao, B. Yuan, B. Zhang, Strong solution to the nonlinear heat equation in homogeneous Besov spaces, J. Nonlinear Analysis, 67 (2007), 1329-1343. | Zbl 1124.35029
[23] C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, J. Nonlinear Analysis, 68 (2008), 461-484. | Zbl 1132.35047
[24] A. Nana Sandjo, C. Wafo Soh and M. Wiegner, Solutions of a fourth-order parabolic equation modeling epitaxial thin film growth, Preprint.
[25] A. Nana Sandjo, Solutions for fourth-order parabolic equation modeling epitaxial thin film growth, Dissertation, Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University, Germany, (August 2011).
[26] L. Nirenberg, On elliptic partial difierential equations, Annali della Scoula Norm. Sup. Pisa, 13 (1959), 115-162.
[27] A. Pazy, Semigroups of linear operators and applications to partial difierential equations, Apllied Mathematical Sciences, 44. Springer-Verlag, New York-Berlin, 1983.
[28] H. B. Steward, Generation of analytic semigroup by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. soc. 259 (1980), 299-310.
[29] F. B. Weisler, Local existence and nonexistence for semilinear parabolic equation in Lp, Indiana Univ. Math. J. 29 (1980), 219-230.
[30] F. B. Weisler, Semilinear evolution equations in Banach spaces, J. of Funct. Anal. 32 (1979), 277-296.
[31] M. Wiegner, The Navier-Stokes Equations-a Neverending Challenge?, Jber. d. Dt. Math.-Verein., 101 (1999), 1-25. | Zbl 0924.35100