We study the local attractivity of mild solutions of equations in the form u’(t) = A(t)u(t) + f (t, u(t)), where A(t) are (possible) unbounded linear operators in a Banach space and where f is a (possible) nonlinear mapping. Under conditions of exponential stability of the linear part, we establish the local attractivity of various kinds of mild solutions. To obtain these results we provide several results on the Nemytskii operators on the space of the functions which converge to zero at infinity
@article{bwmeta1.element.doi-10_2478_msds-2014-0002, author = {Jo\"el Blot and Constantin Bu\c se and Philippe Cieutat}, title = {Local attractivity in nonautonomous semilinear evolution equations}, journal = {Nonautonomous Dynamical Systems}, volume = {1}, year = {2014}, zbl = {1288.35058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2014-0002} }
Joël Blot; Constantin Buşe; Philippe Cieutat. Local attractivity in nonautonomous semilinear evolution equations. Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2014-0002/
[1] L. Amerio & G. Prouse, Almost-periodic functions and functional equations, Van Nostrand, New York, 1971. | Zbl 0215.15701
[2] J.-B. Baillon, J. Blot, G.M. N’Guérékata & D. Pennequin, On C(n)-almost periodic solutions of some nonautonomous diferential equations in Banach spaces, Comment. Math., Prace Mat. XLVI(2) (2006), 263-273. | Zbl 1187.34074
[3] J. Blot, P. Cieutat, G.M. N’Guérékata & D. Pennequin, Superposition operators between various spaces of almost periodic function spaces and applications, Commun. Math. Anal. 6(1) (2009), 42-70. | Zbl 1179.47055
[4] J. Blot & B. Crettez, On the smoothness of optimal paths II: some local turnpike results, Decis. Econ. Finance 30(2) (2007), 137-150. | Zbl 1141.91035
[5] H.S. Ding, W. Long & G.M. N’Guérékata, Almost automorphic solutions of nonautonomous evolution equations, Nonlinear Anal., 70(12) (2009), 4158-4164. | Zbl 1161.43301
[6] S. Lang, Real and functional analysis, Third edition, Springer-Verlag, New York, Inc., 1993. | Zbl 0831.46001
[7] N. V. Minh, F. Räbiger & R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotonomy of evolution equations on the half line, integr. Equ. Oper. Theory, 32 (1998), 332-353. | Zbl 0977.34056
[8] G.M. N’Guérékata, Almost automorphic and almost periodic functions in abstract spaces, Kluwer Academic Publishers, New York, 2001.
[9] G.M. N’Guérékata, Topics in almost automorphy, Springer, New York, 2005.
[10] A. Pazy, Semigroups of linear operators and applications to partial diferential equations, Springer-Verlag New York, Inc., 1983. | Zbl 0516.47023
[11] W. Rudin, Functional analysis, Second edition, McGraw-Hiil, Inc., New York, 1993. | Zbl 0867.46001
[12] L. Schwartz, Cours d’analyse; tome 1, Hermann, Paris, 1967.
[13] T. Yoshizawa, Stability theory and the existence of periodic solutions and almost periodic solutions, Springer-Verlag, New York, 1975.
[14] S. Zaidman, Almost-periodic functions in abstract spaces, Pitman Publishong, Inc., Marshfeld, MA, 1985. | Zbl 0648.42006