Pullback incremental attraction
Peter E. Kloeden ; Thomas Lorenz
Nonautonomous Dynamical Systems, Tome 1 (2014), / Harvested from The Polish Digital Mathematics Library

A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266979
@article{bwmeta1.element.doi-10_2478_msds-2013-0004,
     author = {Peter E. Kloeden and Thomas Lorenz},
     title = {Pullback incremental attraction},
     journal = {Nonautonomous Dynamical Systems},
     volume = {1},
     year = {2014},
     zbl = {1308.37009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0004}
}
Peter E. Kloeden; Thomas Lorenz. Pullback incremental attraction. Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0004/

[1] D. Angeli, A Lyapunov approach to the incremental stability properties, IEEE Trans. Automat. Control 47 (2002), 410-421.

[2] T. Caraballo, M.J. Garrido Atienza and B. Schmalfuß, Existence of exponentially attracting stationary solutions for delay evolution equations. Discrete Contin. Dyn. Syst. Ser. A 18 (2007), 271-293. | Zbl 1125.60058

[3] T. Caraballo, P.E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 50 (2004), 183-207. | Zbl 1066.60058

[4] C.M. Dafermos, An invariance principle for compact processes, J. Differential Equations 9 (1971), 239-252.

[5] L. Grüne, P.E. Kloeden, S. Siegmund and F.R. Wirth, Lyapunov’s second method for nonautonomous differential equations, Discrete Contin. Dyn. Syst. Ser. A 18 (2007), 375-403. | Zbl 1128.37010

[6] P.E. Kloeden, Lyapunov functions for cocycle attractors in nonautonomous difference equations, Izvetsiya Akad Nauk Rep Moldovia Mathematika 26 (1998), 32-42.

[7] P.E. Kloeden, A Lyapunov function for pullback attractors of nonautonomous differential equations, Electron. J. Differ. Equ. Conf. 05 (2000), 91-102. | Zbl 0964.34041

[8] P.E. Kloeden and T. Lorenz, Stochastic differential equations with nonlocal sample dependence, Stoch. Anal. Appl. 28 (2010), 937-945. | Zbl 1205.60131

[9] P.E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations 253 (2012), 1422- 1438. | Zbl 1267.37018

[10] P.E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011.

[11] B.S. Rüffer, N. van de Wouw and M. Mueller, Convergent systems vs. incremental stability, Systems Control Lett. 62 (2013), 277-285. | Zbl 1261.93072

[12] E.D. Sontag, Comments on integral variants of ISS, Systems Control Lett. 34 (1998), 93-100. | Zbl 0902.93062

[13] A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996. | Zbl 0869.65043

[14] Fuke Wu and P.E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B 18, No.6, (2013), 1715-1734. | Zbl 1316.34083

[15] T. Yoshizawa, Stability Theory by Lyapunov’s Second Method. Math. Soc Japan, Tokyo, 1966.