Metric Entropy of Nonautonomous Dynamical Systems
Christoph Kawan
Nonautonomous Dynamical Systems, Tome 1 (2014), / Harvested from The Polish Digital Mathematics Library

We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion of metric entropy. In particular, invariance with respect to appropriately defined isomorphisms, a power rule, and a Rokhlin-type inequality are proved.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266895
@article{bwmeta1.element.doi-10_2478_msds-2013-0003,
     author = {Christoph Kawan},
     title = {Metric Entropy of Nonautonomous Dynamical Systems},
     journal = {Nonautonomous Dynamical Systems},
     volume = {1},
     year = {2014},
     zbl = {1296.37018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0003}
}
Christoph Kawan. Metric Entropy of Nonautonomous Dynamical Systems. Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0003/

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy. Trans. Am. Math. Soc. 114 (1965), 309–319. [WoS][Crossref] | Zbl 0127.13102

[2] F. Balibrea, V. Jiménez López, J. S. Cánovas, Some results on entropy and sequence entropy. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1731–1742. [Crossref] | Zbl 1089.37501

[3] T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems. Random Comput. Dynam. 1 (1992/93), no. 1, 99–116.

[4] R. Bowen, Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153 (1971), 401–414. [Crossref] | Zbl 0212.29201

[5] J. S. Cánovas, Some results on (X; f; A) nonautonomous systems. Iteration theory (ECIT ’02), 53–60, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004. | Zbl 1065.37016

[6] R.-A. Dana, L. Montrucchio, Dynamic complexity in duopoly games. J. Economic Theory 44 (1986), 44–56. | Zbl 0617.90104

[7] G. Froyland, O. Stancevic, Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems. arXiv:1106.1954v4 [math.DS], 2011/12.

[8] T. N. T. Goodman, Topological sequence entropy. Proc. London Math. Soc. (3) 29 (1974), 331–350. | Zbl 0293.54043

[9] X. Huang, X. Wen, F. Zeng, Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 8 (2008), no. 1, 43–48. | Zbl 1300.37007

[10] X. Huang, X. Wen, F. Zeng, Pre-image entropy of nonautonomous dynamical systems. J. Syst. Sci. Complex. 21 (2008), no. 3, 441–445. [Crossref][WoS] | Zbl 1175.37025

[11] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995. | Zbl 0878.58020

[12] A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861–864. | Zbl 0083.10602

[13] S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems. Random Comput. Dynamics 4 (1996), no. 2–3, 205–233. | Zbl 0909.54012

[14] S. Kolyada, M. Misiurewicz, L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval. Fund. Math. 160 (1999), no. 2, 161–181. | Zbl 0936.37004

[15] K. Krzyzewski, W. Szlenk, On invariant measures for expanding differentiable mappings. Studia Math. 33 (1969), 83–92. | Zbl 0176.00901

[16] A. G. Kushnirenko, On metric invariants of entropy type. Russ. Math. Surv. 22 (1967), no. 5, 53–61; translation from Usp. Mat. Nauk 22, no. 5 (137) (1967), 57–65. [Crossref] | Zbl 0169.46101

[17] P.–D. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems. Math. Z. 230 (1999), no. 2, 201–239. | Zbl 0955.37028

[18] P.–D. Liu, M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995. | Zbl 0841.58041

[19] M. Misiurewicz, Topological entropy and metric entropy. Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 61–66, Monograph. Enseign. Math. 29, Univ. Genéve, Geneva (1981).

[20] C. Mouron, Positive entropy on nonautonomous interval maps and the topology of the inverse limit space. Topology Appl. 154 (2007), no. 4, 894–907. [Crossref][WoS] | Zbl 1117.37011

[21] P. Oprocha, P. Wilczynski, Chaos in nonautonomous dynamical systems. An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 17 (2009), no. 3, 209–221. | Zbl 1199.37021

[22] P. Oprocha, P. Wilczynski, Topological entropy for local processes. J. Differential Equations 249 (2010), no. 8, 1929–1967. [WoS] | Zbl 1209.37015

[23] W. Ott, M. Stendlund, L.–S. Young, Memory loss for time-dependent dynamical systems. Math. Res. Lett. 16 (2009), no. 3, 463–475. [Crossref] | Zbl 1177.37055

[24] A. Y. Pogromsky, A. S. Matveev, Estimation of topological entropy via the direct Lyapunov method. Nonlinearity 24 (2011), no. 7, 1937–1959. [Crossref][WoS]

[25] Ja. Sinai, On the concept of entropy for a dynamic system. Dokl. Akad. Nauk SSSR 124 (1959), 768–771. | Zbl 0086.10102

[26] J. Zhang, L. Chen, Lower bounds of the topological entropy for nonautonomous dynamical systems. Appl. Math. J. Chinese Univ. Ser. B 24 (2009), no. 1, 76–82. [WoS][Crossref] | Zbl 1199.37009

[27] Y. Zhao, The relation of dimension, entropy and Lyapunov exponent in random case. Anal. Theory Appl. 24 (2008), no. 2, 129–138. [Crossref] | Zbl 1174.37004

[28] Y. Zhu, Z. Liu, X. Xu and W. Zhang, Entropy of nonautonomous dynamical systems. J. Korean Math. Soc. 49 (2012), no. 1, 165–185. [Crossref] | Zbl 1252.37009

[29] Y. Zhu, J. Zhang, L. He, Topological entropy of a sequence of monotone maps on circles. Korean Math. Soc. 43 (2006), no. 2, 373–382. | Zbl 1098.37038