Compact Global Chaotic Attractors of Discrete Control Systems
David Cheban
Nonautonomous Dynamical Systems, Tome 1 (2014), / Harvested from The Polish Digital Mathematics Library

The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fν(n)(xn), where ν : ℤ+ ⃗ {1,2,...,m}. If m ≥ 2 we give sufficient conditions (the family M := {f1,f2,...,fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous dynamical systems (cocycles).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266954
@article{bwmeta1.element.doi-10_2478_msds-2013-0002,
     author = {David Cheban},
     title = {Compact Global Chaotic Attractors of Discrete Control Systems},
     journal = {Nonautonomous Dynamical Systems},
     volume = {1},
     year = {2014},
     zbl = {06300621},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0002}
}
David Cheban. Compact Global Chaotic Attractors of Discrete Control Systems. Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0002/

[1] V. M. Alekseev, Symbolic Dynamics, The 11th Mathematical School. Kiev, Naukova Dumka, 1986.

[2] M. F. Barnsley, Fractals everywhere, New York, Academic Press, 1988.

[3] N. A. Bobylev, S. V. Emel’yanov, S. K. Korovin, Attractors of Discrete Controlled Systems in Metric Spaces. Computational Mathematics and Modeling, 11 (2000), 321–326; Translated from Prikladnaya Mathematika i Informatika, 3, (1999), 5–10.

[4] V. A. Bondarenko, V. L. Dolnikov, Fractal Image Compression by The Barnsley-Sloan Method, Automation and Remote Control, 55, (1994), 623–629; Translated from Avtomatika i Telemekhanika, 5, (1994), 12–20.

[5] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, Math.Studies, 5, North Holland, 1973. | Zbl 0252.47055

[6] D. N. Cheban, Global Attractors of Nonautonomous Dissipstive Dynamical Systems. Interdisciplinary Mathematical Sciences, 1, River Edge, New Jersey, World Scientific, 2004.

[7] D. N. Cheban, Compact Global Attractors of Control Systems. Journal of Dynamical and Control Systems, 16 (2010), 23–44. [WoS][Crossref] | Zbl 1203.37027

[8] D. N. Cheban, Global Attractors of Set-Valued Dynamical and Control Systems. Nova Science Publishers Inc, New York, 2010. | Zbl 1203.37027

[9] D. N. Cheban, C. Mammana, Global Compact Attractors of Discrete Inclusions. Nonlinear Analyses: TMA, 65, (2006), 1669–1687. | Zbl 1103.37008

[10] D. N. Cheban, B. Schmalfuss, Invariant Manifolds, Global Attractors, Almost Automrphic and Almost Periodic Solutions of Non-Autonomous Differential Equations. J. Math. Anal. Appl., 340, (2008), 374–393. [WoS] | Zbl 1128.37009

[11] L. Gurvits, Stability of Discrete Linear Inclusion. Linear Algebra Appl., 231 (1995), 47–85. | Zbl 0845.68067

[12] B. M. Levitan, V. V. Zhikov, Almost Periodic Functions and Differential Equations. Moscow State University Press, 1978. (in Russian) [English translation in Cambridge Univ. Press, Cambridge, 1982.] | Zbl 0414.43008

[13] J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.

[14] C. Robinson, Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos (Studies in Advanced Mathematics). Boca Raton Florida, CRC Press, 1995.

[15] G. R. Sell, Topological Dynamics and Ordinary Differential Equations. Van Nostrand-Reinhold, London, 1971. | Zbl 0212.29202

[16] B. A. Shcherbakov, Topological Dynamics and Poisson’s Stability of Solutions of Differential Equations. Kishinev, Shtiintsa, 1972 (in Russian). | Zbl 0256.34062

[17] K. S. Sibirskii, A. S. Shube, Semidynamical Systems. Stiintsa, Kishinev 1987 (in Russian).