In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.
@article{bwmeta1.element.doi-10_2478_msds-2013-0001, author = {O.V. Kapustyan and A.V. Pankov}, title = {Global $\phi$-attractor for a modified 3D B\'enard system on channel-like domains}, journal = {Nonautonomous Dynamical Systems}, volume = {1}, year = {2014}, zbl = {1288.35081}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0001} }
O.V. Kapustyan; A.V. Pankov. Global φ-attractor for a modified 3D Bénard system on channel-like domains. Nonautonomous Dynamical Systems, Tome 1 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_msds-2013-0001/
[1] J. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, in "Mechanics: from theory to computation", Springer, New York, 2000, p. 447-474. | Zbl 0958.35101
[2] M. Cabral, R. Rosa, R. Temam, Existence and dimension of the attractor for the Bénard problem on channel-like domain, Discrete Contin. Dyn. Syst., 10 (2004), 89-116. | Zbl 1049.37046
[3] T. Caraballo, P.E. Kloeden, J. Real, Unique strong solution and V-attractor of three-dimensional system of globally modified Navier-Stokes equation, Advanced Nonlinear Studies, 6 (2006), 411-436. | Zbl 1220.35115
[4] V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997), 913-964. | Zbl 0896.35032
[5] C. Foias, R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, in "Directions in Partial Differential Equations", Academic Press, 1987, p.55-73.
[6] O.A. Ladyzhenskaya, "Attractors of semigroups and evolution equations", Cambridge University Press, Cambridge, 1991. | Zbl 0755.47049
[7] J.L. Lions, "Quelques méthodes de résolutions des problèmes aux limites non linéaires", Dunod, Gauthier-Villars, Paris, 1969. | Zbl 0189.40603
[8] O.V. Kapustyan, V.S. Melnik, J. Valero, A weak attractors and properties of solutions for the three-dimensional Bénard problem, Discrete Contin. Dyn. Syst., 18 (2007), 449-481. | Zbl 1143.35013
[9] O.V. Kapustyan, A.V. Pankov, J. Valero, On global attractors of multivalued semiflows generated by the 3D Bénard system, Set-Valued and Variat. Anal., 20 (2012), 445-465. [WoS] | Zbl 1259.35042
[10] O.V. Kapustyan, J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278. | Zbl 1131.35056
[11] P.E. Kloeden, J. Valero, The Kneser property of the weak solutions of the three-dimensional Navier-Stokes equations, Discrete Contin. Dyn. Syst., 28 (2010), 161-179. | Zbl 1194.35061
[12] V.S. Melnik, J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal. 6 (1998), 83-111.
[13] D.E. Norman, Chemically reacting fluid flows: weak solutions and global attractors, J. Differential Equations, 152 (1999), 75-135. | Zbl 0936.35133
[14] J. Robinson, "Infinite-dimensional dynamical systems", Cambridge University Press, Cambridge, 2001. | Zbl 1026.37500
[15] M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Advanced Nonlinear Studies, 9 (2009), 425-427. | Zbl 1181.35178
[16] R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domain, Nonlinear Anal., 32 (1998), 71-85. | Zbl 0901.35070
[17] G. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynamics Differential Equations 8 (1996), 1-33. | Zbl 0855.35100
[18] G.R. Sell, Y. You, "Dynamics of evolutionary equations", Springer, New-York, 2002. | Zbl 1254.37002
[19] J. Simon, "Compact sets in the space Lp(0; T ;B)", Ann. Mat. Pura Appl. 146 (1986), 65-96. | Zbl 0629.46031
[20] J. Simsen, C. Gentile, On attractors for multivalued semigroups defined by generalized semiflows, Set-Valued Anal., 16 (2008), 105-124. [WoS] | Zbl 1143.35310
[21] R. Temam, "Navier-Stokes equations", North-Holland, Amsterdam, 1979. | Zbl 0426.35003
[22] R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics", Springer-Verlag, New York, 1988. | Zbl 0662.35001
[23] M.Z.Zgurovsky, P.O. Kasyanov, O.V. Kapustyan, J. Valero, N.V. Zadoinchuk, "Evolution inclusions and variational inequalities for Earth data processing III", Springer-Verlag, New York, 2012. | Zbl 1317.86003