Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA) pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP) equations that are solved by Finite Element Method (FEM). Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.
@article{bwmeta1.element.doi-10_2478_mlbmb-2014-0003, author = {Shixin Xu and Minxin Chen and Sheereen Majd and Xingye Yue and Chun Liu}, title = {Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores}, journal = {Molecular Based Mathematical Biology}, volume = {2}, year = {2014}, zbl = {1323.92090}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2014-0003} }
Shixin Xu; Minxin Chen; Sheereen Majd; Xingye Yue; Chun Liu. Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores. Molecular Based Mathematical Biology, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2014-0003/
[1] T. W. Allena, M. Hoylesa, S. Kuyucakb, and S. H. Chunga. Molecular and brownian dynamics study of ion selectivity and conductivity in the potassium channel. Chem. Phys. Lett., 313:358-365, 1999.
[2] O. S. Andersen, R. E. Koeppe, and B. Roux. Gramicidin channels. IEEE T. Nanobiosci., 4:295-306, 2005.
[3] H. J. Apell, E. Bamberg, and P. Lauger. E_ects of surface charge on the conductance of the gramicidin channel. Biochem. Biophys. Acta, 552:369-378, 1979.
[4] A. Archer. Dynamical density functional theory for dense atomic liquids. J. Phys.: Condens. Matter, 18:5617, 2006.[Crossref]
[5] I. Babuska. The _nite element method for elliptic equations with discontinuous coe_cients. Computing, 5:207-218, 1970.[Crossref]
[6] R. Capone, S. Blake, M. R. Restrepo, J. Yang, and M. Mayer. Designing nanosensors based on charged derivatives of gramicidin a. J. Am. Chem. Soc., 129:9737-9745, 2007.
[7] A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova. Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicidin A channel conductance. Biophys. J., 79:80-93, 2000.[Crossref][PubMed]
[8] Z. M. Chen and J. Zhou. Finite elemtent methods and their convergence for elliptic and parabolic interface problems. Numer. Math, 79:175-202, 1996.
[9] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Elsevier, 1978. | Zbl 0383.65058
[10] S. Durand-Vidal, J. P. Simonin, and P. Turq. Electrolytes at Interfaces. Kluwer, Boston, 2000.
[11] S. Durand-Vidal, P. Turq, O. Bernard, C. Treiner, and L. Blum. perspectives in transport phenomena in electrolytes. Physica A, 231:123-143, 1996.
[12] B. Eisenberg, Y. Hyon, and C. Liu. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys, 113:104-127, 2010.
[13] B. Eisenberg and W. S. Liu. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Analysis, 38(6):1932-1966, 2007. | Zbl 1137.34022
[14] J. Forster. Mathematical modeling of complex fluids. master thesis, University of Wurzbur, 2013.
[15] H. K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE T. Electron. Dev., 11, 1964.
[16] U. Hollerbach, D. Chen, and R. S. Eisenberg. Two- and three-dimensional Poisson-Nernst-Planck simulations of current flow through gramicidin a. J. Sci. Comput., 16:373-409, 2001.[Crossref] | Zbl 0997.78004
[17] T. Horng, T. Lin, C. Liu, and B. Eisenberg. Pnp equations with steric e_ects: A model of ion flow through channels. J. Phys. Chem. B., 116(37):11422-11441, 2012.
[18] H. Hwang, G. C. Schatz, and M. A. Ratner. Incorporation of inhomogeneous ion difiusion coe_cients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel. J. Phys. Chem., 111(49):12506-12512, 2007.
[19] W. Im and B. Roux. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, brownian dynamics and continuum electrodi_usion theory. J. Mol. Biol., 322:851-869, 2002.
[20] M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan. A lattice relaxation algorithm for three-dimensional Poisson-Nernst- Planck theory with application to ion transport through the gramicidin A channel. Biophys. J., 76:642-656, 1999.
[21] K. Lee, H. Rui, R. W. Pastor, and W. Im. Brownian dynamics simulations of ion transport through the vdac. Biophys. J., 100:611-619, 2011.
[22] L. L. Lee. Molecular Thermodynamics of Electrolyte Solutions. World Scienti_c, Singapore, 2008.
[23] B. Lu, M. J. Holst, A. Mccammon, and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular di_usionreaction processes I: Finite element solutions. J. Comput. Phys., 229:6979-6994, 2010. | Zbl 1195.92004
[24] B. Lu and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular di_usion-reaction processes II: Size e_ects on ionic distributions and di_usion-reaction rates. Biophys. J., 100:2475-2485, 2011.
[25] M. X. Macrae, S. Blake, X. Jiang, R. Capone, D. J. Estes, M. Mayer, and J. Yang. A semi-synthetic ion channel platform for detection of phosphatase and protease activity. ACS Nano, 3:3567-3580, 2009.[Crossref][PubMed]
[26] M. X. Macrae, S. Blake, M. Mayer, and J. Yang. Nanoscale ionic diodes with tunable and switchable rectifying behavior. J. Am. Chem. Soc., 132:1766-1767, 2010.
[27] M. X. Macrae, D. Schlamadinger, J. E. Kim, M. Mayer, and J. Yang. Using charge to control the functional properties of self-assembled nanopores in membranes. Small, 7:2016-2020, 2011.[PubMed][Crossref]
[28] S. Majd, C. Yusko, A. D. MacBriar, J. Yang, and M. Mayer. Gramicidin pores report the activity of membrane-active enzymes. J. Am. Chem. Soc., 131:16119-16126, 2009.
[29] U. M. B. Marconi and P. Tarazona. Dynamic density functional theory of fluids. J. Chem. Phys., 110:8032, 1999.
[30] S. R. Mathur and J. Y. Murthy. A multigrid method for the Poisson-Nernst-Planck equations. SIAM J. Appl. Math., 52:4031-4039, 2009. | Zbl 1167.76343
[31] W. Nonner, D. Gillespie, D. Henderson, and B. Eisenberg. Ion accumulation in a biological calcium channel: E_ects of solvent and con_ning pressure. J. Phys. Chem. B, 105:6427-6436, 2001.[Crossref]
[32] S. Y. Noskov, W. Im, and B. Roux. Ion permeation through the _-hemolysin channel: Theoretical studies based on brownian dynamics and Poisson-Nernst-Plank electrodi_usion theory. Biophys. J., 87:2299-2309, 2004.
[33] L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., II. Ser. 37:405-426, 1931.[Crossref] | Zbl 57.1168.10
[34] L. Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 2:2265-2279, 1931.[Crossref] | Zbl 0004.18303
[35] P. O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Rev., 46:329-345, 2004.[Crossref] | Zbl 1061.65134
[36] K. S. Pitzer. Thermodynamics. Mcgraw-Hill College, New York, 1995.
[37] K. S. Pitzer and J. J. Kim. Thermodynamics of electrolytes. iv. activity and osmotic coe_cients for mixed electrolytes. J.
Am. Chem. Soc., 96:5701-5707, 1974.
[38] T. Z. Qian, X. P. Wang, and P. Sheng. A variational approach to the moving contact line hydrodynamics. J. Fluid Mech., 564:333-360, 2006. | Zbl 1178.76296
[39] G. M. Roger, O. Bernard S. Durand-Vidal, and P. Turq. Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation. J. Phys. Chem. B, 113:8670-8674, 2009.
[40] B. Roux, T. Allen, Simon Berneche, and W. Im. Theoretical and computational models of biological ion channels. Q. Rev. Biophys., 37:15-103, 2 2004.
[41] T. Schirmer and P. Phale. Brownian dynamics simulation of ion flow through porin channels. J. Mol. Biol., 294:1159-1167, 1999.
[42] G. Stell and C. G. Joslin. The donnan equilibrium a theoretical study of the e_ects of interionic forces. Biophys., 50:855-859, 1986.
[43] J. W. Strutt. Some general theorems relating to vibrations. Proc. London Math. Soc., IV:357-368, 1873. | Zbl 05.0537.01
[44] V. Thomée. Galerkin _nite element methods for parabolic problems. Springer, 1997. | Zbl 0884.65097
[45] B. Tu, M. X. Chen, Y. Xie, L. B. Zhang, B. Eisenberg, and B. Z. Lu. A parallel _nite element simulator for ion transport through three-dimensional ion channel systems. J. Phys. Chem., 34(24):2065-2078, 2013.
[46] L. Vrbka, J. Vondrasek, B. Jagoda-Cwiklik, R. Vacha, and P. Jungwirth. Quanti_cation and rationalization of the higher a_nity of sodium over potassium to protein surfaces. P. Natl. Acad. Sci. USA, 17:15440-15444, 2006.[Crossref]
[47] B. A. Wallace. Structure of gramicidin a. Biophys. J., 49:295-306, 1986.[Crossref][PubMed]
[48] H. Wu, T. Lin, and C. Liu. On transport of ionic solutions: from kinetic laws to continuum descriptions. arXiv:1306.3053, 2014.
[49] J. Xu and L. Zikatanov. A monotone _nite element scheme for convection-di_usion equations. Math. Comp., 68:1429-1446, 1999. | Zbl 0931.65111
[50] S. Xu, P. Sheng, and C. Liu. Energy variational approach for ions transport. Comm. Math. Sci., 12, 1964.
[51] S. Yu and G.W. Wei. Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. | Zbl 1128.65103
J. Comput. Phys., 227(1):602 - 632, 2007.
[52] C. Yuan, R. J. O’Connell, P. L. Feinberg-Zadek, L. J. Johnston, and S. N. Treistman. Bilayer thickness modulates the conductance of the bk channel in model membranes. Biophys. J., 86:3620-3633, 2004.
[53] Q. Zheng, D. Chen, and G. W. Wei. Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys., 230:5239-5262, 2011. | Zbl 1222.82073
[54] Y.C. Zhou, S. Zhao, M. Feig, and G.W. Wei. High order matched interface and boundary method for elliptic equations with discontinuous coeficients and singular sources. J. Comput. Phys., 213(1):1 - 30, 2006. | Zbl 1089.65117