A classification of all possible icosahedral viral capsids is proposed. It takes into account the diversity of hexamers’ compositions, leading to definite capsid size.We showhowthe self-organization of observed capsids during their production results from definite symmetries of constituting hexamers. The division of all icosahedral capsids into four symmetry classes is given. New subclasses implementing the action of symmetry groups Z2, Z3 and S3 are found and described. They concern special cases of highly symmetric capsids whose T = p2 + pq + q2-number is of particular type corresponding to the cases (p, 0) or (p, p).
@article{bwmeta1.element.doi-10_2478_mlbmb-2014-0001, author = {Richard Kerner}, title = {Discrete Groups and Internal Symmetries of Icosahedral Viral Capsids}, journal = {Molecular Based Mathematical Biology}, volume = {2}, year = {2014}, zbl = {1321.92066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2014-0001} }
Richard Kerner. Discrete Groups and Internal Symmetries of Icosahedral Viral Capsids. Molecular Based Mathematical Biology, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2014-0001/
[1] R. Kerner Model of viral capsid growth. Computational and Mathematical Methods in Medicine, 6, Issue 2, (2007), 95-97
[2] R. Kerner Classi_cation and evolutionary trends of icosahedral viral capsids. Computational and Mathematical Methods in Medicine, 9, Issue 3 & 4, (2008), 175-181.[WoS] | Zbl 1154.92017
[3] R. Kerner, Models of Agglomeration and Glass Transition. Imperial College Press, (2007). | Zbl 1189.82002
[4] R. Kerner Self-Assembly of Icosahedral Viral Capsids: the Combinatorial Analysis Approach, Mathematical Modelling of Natural Phenomena, Vol. 6, No. 6, (2011), 136-158 | Zbl 1241.92024
[5] D. D. Richman, R. J. Whitley and F. G. Hayden, Clinical Virology. (second edition); ASM Press, Washington DC (2009)
[6] M.C.M. Coxeter, “Regular polytopes”, Methuen and Co, London, (1948) | Zbl 0031.06502
[7] M. Eigen, 1971, Selforganization of matter and the evolution of biological molecules, Springer-Verlag, Die Natutwissenschaften 58 heft 10, [8] H. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene. Nature, 318 (1995), 162-163.
[9] D. L. D. Caspar and A. Klug, Physical Principles in the Construction of Regular Viruses. Cold Spring Harbor Symp. Quant. Biology, 27 (1962), No 1, 1-24.
[10] A. Zlotnick, To Build a Virus Capsid : An Equilibrium Model of the Self Assembly of Polyhedral Protein Complexes. J. Mol. Biology 241, (1994), 59-67.
[11] S. B. Larson et al., 1998, Re_ned structure of satellite tobacco mosaic virus at 1.8 A resolution. Journal of Molecular Biology 277 (1998) 37-59.
[12] D. J. McGeogh and A. J. Davison, , The descent of human herpesvirus. 8.Semin. Cancer Biology, 9 (1999), 201-209.
[13] D. J. McGeogh and A. J. Davison, The molecular evolutionary history of the herpesviruses: origins and evolution of viruses, Academic Press Ltd., London (1999).
[14] P. L. Stewart, R. M. Burnett, M. Cyrklaff, S. D. Fuller, Image reconstruction reveals the complex molecular organization of adenovirus. Cell, 67 (1991) October 4, 145-154
[15] B. L. Trus et al., Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a a Betaherpesvirus, Cytomegalovirus. Journal of Virology, 75 (2001) No 6, 2879-2890.
[16] Q. Wang, T. Lin, L. Tang, J. E. Johnson and M. G. Finn, Icosahedral Virus Particles as Addressable Nanoscale Building Blocks. Angewandte Chemie, 114 (2002), No 3, 477-480. (2003) 167-236
[17] H. R. Hill, N. J. Stonehouse, S. A. Fonseca and P. Stockley, Analysis of phage MS2 coat protein mutants expressed from a reconstituted phagemid reveals that proline 78 is essential for viral infectivity. Journal of Molecular Biology, 266, (1997), 1-7.
[18] P. E. Prevelige, D. Thomas and J. King, Nucleation and growth phases in the polymerization of coat and sca_olding subunits into icosahedral procapsid shells. Biophys. Journal 64 (1993), 824-835;
[19] B. Buckley, S. Silva and S. Singh, S. 1993, Nucleotide sequence and in vitro expression of the capsid protein gene of tobacco ringspot virus. Virus Research, 30 (1993), 335-349
[20] R. Twarock, A tiling approach to virus capsid assembly explaining a structural puzzle in virology. Journal of Theoretical Biology, 226 (2004), No 4, 477-482
[21] R. Kerner, The principle of self-similarity , in “Current Problems in Condensed Matter”, ed. J. Moran-Lopez, (1998), 323-341