Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations
M. R. Swager ; Y. C. Zhou
Molecular Based Mathematical Biology, Tome 1 (2013), p. 26-41 / Harvested from The Polish Digital Mathematics Library

A general approach was proposed in this article to develop high-order exponentially fitted basis functions for finite element approximations of multi-dimensional drift-diffusion equations for modeling biomolecular electrodiffusion processes. Such methods are highly desirable for achieving numerical stability and efficiency. We found that by utilizing the one-to-one correspondence between the continuous piecewise polynomial space of degree k + 1 and the divergencefree vector space of degree k, one can construct high-order two-dimensional exponentially fitted basis functions that are strictly interpolative at a selected node set but are discontinuous on edges in general, spanning nonconforming finite element spaces. First order convergence was proved for the methods constructed from divergence-free Raviart-Thomas space RT 00 at two different node sets.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267279
@article{bwmeta1.element.doi-10_2478_mlbmb-2013-0001,
     author = {M. R. Swager and Y. C. Zhou},
     title = {Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations},
     journal = {Molecular Based Mathematical Biology},
     volume = {1},
     year = {2013},
     pages = {26-41},
     zbl = {1277.65099},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2013-0001}
}
M. R. Swager; Y. C. Zhou. Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations. Molecular Based Mathematical Biology, Tome 1 (2013) pp. 26-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2013-0001/

D. N. Allen and R. V. Southwell. Relaxation method applied to determine the motion, in two dimensions, of viscous fluid past a fixed cylinder. Q. J. Mech. Appl. Math., 8(2):129-145, 1955.[Crossref]

C. Amatore, O. V. Klymenko, A. I. Oleinick, and I. Svir. Diffusion with moving boundary on spherical surfaces. Chemphyschem., 10:1593-1602, 2009.[PubMed][WoS][Crossref]

C. Amatore, A. I. Oleinick, O. V. Klymenko, and I. Svir. Theory of long-range diffusion of proteins on a spherical biological membrane: Application to protein cluster formation and actin-comet tail growth. Chemphyschem., 10:1586-1592, 2009.[WoS][PubMed][Crossref]

Lutz Angermann and Song Wang. On convergence of the exponentially fitted finite volume method with an anisotropic mesh refinement for a singularly perturbed convection-diffusion equation. Computational Methods in Applied Mathematics, 3:493-512, 2003. | Zbl 1038.65112

Lutz Angermann and Song Wang. Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations. Applied Numerical Mathematics, 46(1):19 - 43, 2003. | Zbl 1028.82024

Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Multigrid in h(div) and h(curl). Numer. Math., 85:197-218, 2000. | Zbl 0974.65113

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer, 2008. | Zbl 1135.65042

F. Brezzi, J. Douglas, and L. Marini. Two families of mixed finite elements for second order elliptic problem. Math. Comp., 47:217-235, 1985. | Zbl 0599.65072

F. Brezzi and M. Fortin. Mixed and Hybrid Finite Elements. Springer-Verlag, 1991. | Zbl 0788.73002

F. Brezzi, L. D. Marini, and P. Pietra. Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal., 26:1342-1355, 1989.[Crossref] | Zbl 0686.65088

Y. J. Peng C. Chainais-Hillairet. Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Mathematical Models and Methods in Applied Sciences, 14(03):461-481, 2004.

Jehanzeb Hameed Chaudhry, Jeffrey Comer, Aleksei Aksimentiev, and Luke N. Olson. A finite element method for modified Poisson-Nernst-Planck equations to determine ion flow though a nanopore. Preprint.

P.G. Ciarlet and J.L. Lions, editors. Handbook of Numerical Analysis: Finite Element Methods (Part 1). North- Holland, 1991. | Zbl 0712.65091

M. Crouzeix and P.A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer., 7:33-76, 1973. | Zbl 0302.65087

Carlo de Falco, Joseph W. Jerome, and Riccardo Sacco. Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation. J. Comput. Phys., 228(5):1770 - 1789, 2009.[WoS] | Zbl 1158.82012

E. Gatti, S. Micheletti, and R. Sacco. A new Galerkin framework for the drift-diffusion equation in semiconductors. East-West J. Numer. Math., 6:101-135, 1998. | Zbl 0915.65128

Alan F. Hegarty, Eugene O’Riordan, and Martin Stynes. A comparison of uniformly convergent difference schemes for two-dimensional convectionâATdiffusion problems. J. Comput. Phys., 105(1):24 - 32, 1993. | Zbl 0769.65071

J. W. Jerome. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices. Springer, 1996.

Vladimir Yu. Kiselev, Marcin Leda, Alexey I. Lobanov, Davide Marenduzzo, and Andrew B. Goryachev. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: Comparison of continuous and monte carlo approaches. J. Chem. Phys., 135:155103, 2011.[WoS]

R. D. Lazarov, Ilya D. Mishev, P. S. Vassilevski, and L. Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal., 33:31-55, 1996.[Crossref] | Zbl 0847.65075

B. Z. Lu, Y. C. Zhou, Gary A. Huber, Steve D. Bond, Michael J. Holst, and J. A. McCammon. Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J. Chem. Phys., 127:135102, 2007.[WoS][Crossref]

Benzhuo Lu, M. J. Holst, J. A. McCammon, and Y. C. Zhou. Poisson-Nernst-Planck Equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions. J. Comput. Phys., 229:6979-6994, 2010. | Zbl 1195.92004

Benzhuo Lu and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: Size effects on ionic distributions and diffusion-reaction rates. Biophys. J., 100:2475-2485, 2011.[WoS]

J. J. H. Miller and S. Wang. A new non-conforming petrov-galerkin finite-element method with triangular elements for a singularly perturbed advection-diffusion problem. IMA J. Numer. Anal., 14(2):257-276, 1994. | Zbl 0806.65111

Eugene O’Riordan and Martin Stynes. A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions. Math. Comp., 57:47-62, 1991. | Zbl 0733.65063

René Pinnau. Uniform convergence of an exponentially fitted scheme for the quantum drift diffusion model. SIAMJ. Numer. Anal., 42:1648-1668, 2004.[Crossref] | Zbl 1080.65107

P.A. Raviart and J.M. Thomas. A mixed finite element method for second order elliptic problems. In I. Galligani and E. Magenes, editors, Lecture notes in Mathematics, Vol. 606. Springer-Verlag, 1977. | Zbl 0362.65089

R. Sacco, E. Gatti, and L. Gotusso. The patch test as a validation of a new finite element for the solution of convection-diffusion equations. Comput. Methods Appl. Mech. Eng., 124:113-124, 1995.[Crossref] | Zbl 0948.78013

R. Sacco and F. Saleri. Stabilized mixed finite volume methods for convection-diffusion problems. East West J. Numer. Math., 5:291-311, 1997. | Zbl 0895.65050

R. Sacco and M. Stynes. Finite element methods for convection-diffusion problems using exponential splines on triangles. Computers Math. Applic., 35(3):35 - 45, 1998. | Zbl 0907.65110

Riccardo Sacco, Emilio Gatti, and Laura Gotusso. A nonconforming exponentially fitted finite element method for two-dimensional drift-diffusion models in semiconductors. Numerical Methods for Partial Differential Equations, 15(2):133-150, 1999. | Zbl 0926.65119

D. L. Scharfetter and H. K. Gummel. Large-signal analysis of a silicon read diode oscillator. IEEE T. Electron Dev., 16:64-77, 1969.[Crossref]

R. Scheichl. Decoupling three-dimensional mixed problems using divergence-free finite elements. SIAM J. Sci. Comput., 23(5):1752-1776, 2002. | Zbl 1038.65125

J. Wang, Y. Wang, and X. Ye. A robust numerical method for stokes equations based on divergence-free h(div) finite element methods. SIAM J. Sci. Comput., 31(4):2784-2802, 2009. | Zbl 05770810

J. Wang and X. Ye. New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal., 45:1269-1286, 2007.[WoS][Crossref] | Zbl 1138.76049

Y. C. Zhou. Electrodiffusion of lipids on membrane surfaces. J. Chem. Phys., 136:205103, 2012.[Crossref][WoS]