High-order fractional partial differential equation transform for molecular surface construction
Langhua Hu ; Duan Chen ; Guo-Wei Wei
Molecular Based Mathematical Biology, Tome 1 (2013), p. 1-25 / Harvested from The Polish Digital Mathematics Library

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267473
@article{bwmeta1.element.doi-10_2478_mlbmb-2012-0001,
     author = {Langhua Hu and Duan Chen and Guo-Wei Wei},
     title = {High-order fractional partial differential equation transform for molecular surface construction},
     journal = {Molecular Based Mathematical Biology},
     volume = {1},
     year = {2013},
     pages = {1-25},
     zbl = {1277.35338},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2012-0001}
}
Langhua Hu; Duan Chen; Guo-Wei Wei. High-order fractional partial differential equation transform for molecular surface construction. Molecular Based Mathematical Biology, Tome 1 (2013) pp. 1-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_mlbmb-2012-0001/

O. P. Agrawal. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 272:368–379, 2002. | Zbl 1070.49013

B. Baeumer, M. Meerschaert, D. Benson, and S. Wheatcraft. Subordinated advection-dispersion equation for contaminant transport. Water Resour.Res., 37:1543–1550, 2001.

J. Bai and X. C. Feng. Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Proc., 16:2492– 2502, 2007.

P. W. Bates, Z. Chen, Y. H. Sun, G. W. Wei, and S. Zhao. Geometric and potential driving formation and evolution of biomolecular surfaces. J. Math. Biol., 59:193–231, 2009. | Zbl 1311.92212

P. W. Bates, G. W. Wei, and S. Zhao. The minimal molecular surface. arXiv:q-bio/0610038v1, [q-bio.BM], 2006.

P. W. Bates, G. W. Wei, and S. Zhao. Minimal molecular surfaces and their applications. Journal of Computational Chemistry, 29(3):380–91, 2008. [Crossref]

A. L. Bertozzi and J. B. Greer. Low-curvature image simplifiers: Global regularity of smooth solutions and laplacian limiting schemes. Communications on Pure and Applied Mathematics, 57(6):764–790, 2004. [Crossref] | Zbl 1058.35083

J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3):235–256, 1982. [Crossref]

P. Blomgren and T. Chan. Color TV: total variation methods for restoration of vector-valued images. Image Processing, IEEE Transactions on, 7(3):304–309, 1998. [Crossref]

A. Blumen, G. Zumofen, and J. Klafter. Transport aspects in anomalous diffusion: L’evy walks. Phys. Rev. A, 40:3964–3973, 1989. [Crossref]

M. Caputo. Linear model of dissipation whose w is almost frequency independent. Geophys. J. R. Astr. Soc., 13:529– 539, 1997.

V. Carstensen, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal of Computer Vision, 22:61–79, 1997. | Zbl 0894.68131

A. Chambolle and P. L. Lions. Image recovery via total variation minimization and related problems. Numerische Mathematik, 76(2):167–188, 1997. [Crossref] | Zbl 0874.68299

T. Chan, A. Marquina, and P. Mulet. High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 22(2):503–516, 2000. [Crossref] | Zbl 0968.68175

D. Chen, Z. Chen, C. Chen, W. H. Geng, and G. W. Wei. MIBPB: A software package for electrostatic analysis. J. Comput. Chem., 32:657 – 670, 2011.

D. Chen and G. W. Wei. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices. J. Comput. Phys., 229:4431–4460, 2010. | Zbl 1191.82113

F. Chen, C. M.and Liu, I. Turner, and V. Anh. A fourier method for the fractional diffusion equation describing sub-diffusion. Journal of Computational Physics, 227:886– 897, 2007. | Zbl 1165.65053

Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models I: Eulerian formulation. J. Comput. Phys., 229:8231–8258, 2010. | Zbl 1229.92030

Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models II: Lagrangian formulation. J. Math. Biol., 63:1139– 1200, 2011. | Zbl 1284.92025

S. Didas, J. Weickert, and B. Burgeth. Properties of higher order nonlinear diffusion filtering. Journal of mathematical imaging and vision, 35(3):208–226, 2009. | Zbl 1171.68788

T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker. PDB2PQR: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32:W665–W667, 2004. [Crossref]

R. Gabdoulline and R. Wade. Analytically defined surfaces to analyze molecular interaction properties. Journal of Molecular Graphics, 14(6):341–353., 1996. [Crossref]

W. Geng and G. W. Wei. Multiscale molecular dynamics using the matched interface and boundary method. J Comput. Phys., 230(2):435–457, 2011. | Zbl 1246.82028

W. Geng, S. Yu, and G. W. Wei. Treatment of charge singularities in implicit solvent models. Journal of Chemical Physics, 127:114106, 2007.

J. Giard and B. Macq. Molecular surface mesh generation by filtering electron density map. International Journal of Biomedical Imaging, 2010(923780):9 pages, 2010.

R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto. Fractional calculus and continuous-time finance.iii,the diffusion limit.mathematical finance(konstanz, 2000). Trends in Math., Birkhuser, Basel, page 171, 18, 2001. | Zbl 1138.91444

J. Grant and B. Pickup. A Gaussian description of molecular shape. Journal of Physical Chemistry, 99:3503–3510, 1995.

J. B. Greer and A. L. Bertozzi. H-1 solutions of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 10(1-2):349–366, 2004. | Zbl 1159.68619

J. B. Greer and A. L. Bertozzi. Traveling wave solutions of fourth order PDEs for image processing. SIAM Journal on Mathematical Analysis, 36(1):38–68, 2004. [Crossref] | Zbl 1082.35080

P. Guidotti and K. Longo. Two enhanced fourth order diffusion models for image denoising. Journal of Mathematical Imaging and Vision, 40:188–198, 2011. | Zbl 1255.68235

P. Guidotti and K. Longo. Well-posedness for a class of fourth order diffusions for image processing. NODEANonlinear Differential Equations and Applications, 18:407–425, 2011. | Zbl 1227.35149

N. Huang, Z. Shen, S. Long, N. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis. Proceedings of Royal Society of London A, 454:903–995, 1998. | Zbl 0945.62093

Z. M. Jin and X. P. Yang. Strong solutions for the generalized Perona-Malik equation for image restoration. Nonlinear Analysis-Theory Methods and Applications, 73(4):1077–1084, 2010. | Zbl 1194.35503

M. Lysaker, A. Lundervold, and X. C. Tai. Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 12(12):1579–1590, 2003. [Crossref] | Zbl 1286.94020

F. Mainardi and R. Gorenflo. On Mittag-Leffler-type functions in fractional evolution processes. Journal of Computational and Applied Mathematics, 118:283 – 299, 2000. [Crossref] | Zbl 0970.45005

M. Meerschaert. Fractional calculus, anomalous diffusion, and probability. Fractional Dynamics, R. Metzler and J. Klafter, Eds., World Scientific, Singapore, pages 265–284, 2012. | Zbl 1297.35276

M. Meerschaert and C. Tadjeran. Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1):65–77, 2004. [Crossref] | Zbl 1126.76346

D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5):577–685, 1989. [Crossref] | Zbl 0691.49036

A. Nicholls, D. L. Mobley, P. J. Guthrie, J. D. Chodera, and V. S. Pande. Predicting small-molecule solvation free energies: An informal blind test for computational chemistry. Journal of Medicinal Chemistry, 51(4):769–79, 2008. [Crossref]

S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent results. J. Comput. Phys., 169(2):463– 502, 2001. | Zbl 0988.65093

S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27(4):919–940, 1990. [Crossref] | Zbl 0714.65096

S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1):12–49, 1988. | Zbl 0659.65132

P. Perona and J. Malik. Scale-space and edge-detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990. [Crossref]

M. Raberto, E. Scalas, and F. Mainardi. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A, 314:749–755, 2002. | Zbl 1001.91033

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1- 4):259–268, 1992. [Crossref] | Zbl 0780.49028

L. Sabatelli, S. Keating, J. Dudley, and P. Richmond. Waiting time distributions in financial markets. Eur.Phys.J.B, 27:273–275, 2002. [Crossref]

M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 38:305–320, 1996. [Crossref][PubMed]

G. Sapiro and D. L. Ringach. Anisotropic diffusion of multivalued images with applications to color filtering. Image Processing, IEEE Transactions on, 5(11):1582–1586, 1996. [Crossref] | Zbl 0852.68113

J. A. Sethian. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys., 169(2):503–555, 2001. | Zbl 0988.65095

N. Sochen, R. Kimmel, and R. Malladi. A general framework for low level vision. Image Processing, IEEE Transactions on, 7(3):310–318, 1998. [Crossref] | Zbl 0973.94502

H. Soltanianzadeh, J. P. Windham, and A. E. Yagle. A multidimensional nonlinear edge-preserving filter for magneticresonace image-restoration. IEEE Transactions on Image Processing, 4(2):147–161, 1995. [Crossref]

Y. H. Sun, P. R. Wu, G. W. Wei, and G. Wang. Evolution-operator-based single-step method for image processing. Int. J. Biomed. Imaging, 83847:1–27, 2006. [PubMed]

T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface processing via normal maps. Acm Transactions on Graphics, 22(4):1012–1033, 2003. [Crossref]

J. A. Wagoner and N. A. Baker. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proceedings of the National Academy of Sciences of the United States of America, 103(22):8331–6, 2006. [Crossref]

Y. Wang, G. W. Wei, and S.-Y. Yang. Partial differential equation transform – Variational formulation and Fourier analysis. International Journal for Numerical Methods in Biomedical Engineering, 27:1996–2020, 2011. | Zbl 1254.94012

Y. Wang, G. W. Wei, and S.-Y. Yang. Selective extraction of entangled textures via adaptive pde transform. International Journal in Biomedical Imaging, 2012:958142, 2012.

Y. Wang, G. W. Wei, and S.-Y. Yang. Iterative filtering decomposition based on local spectral evolution kernel. Journal of Scientific Computing, pages DOI: 10.1007/s10915–011–9496–0, accepted, 2011. [Crossref]

Y. Wang, G. W. Wei, and S.-Y. Yang. Mode decomposition evolution equations. Journal of Scientific Computing, accepted,2011. | Zbl 06046075

G. W. Wei. Generalized Perona-Malik equation for image restoration. IEEE Signal Processing Letters, 6(7):165–167, 1999. [Crossref]

G. W. Wei. Differential geometry based multiscale models. Bulletin of Mathematical Biology, 72:1562 – 1622, 2010. | Zbl 1198.92001

G. W. Wei and Y. Q. Jia. Synchronization-based image edge detection. Europhysics Letters, 59(6):814–819, 2002. [Crossref]

G. W. Wei, Q. Zheng, Z. Chen, and K. Xia. Differential geometry based ion transport models. SIAM Review, 54(4), 2012.

T. P. Witelski and M. Bowen. ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics, 45(2-3):331–351, 2003. [Crossref] | Zbl 1061.76051

A. Witkin. Scale-space filtering: A new approach to multi-scale description. Proceedings of IEEE International Conference on Acoustic Speech Signal Processing, 9:150–153, 1984.

M. Xu and S. L. Zhou. Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation. Journal of Mathematical Analysis and Applications, 325(1):636–654, 2007. | Zbl 1107.35038

Y. You and M. Kaveh. Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9(10):1723–1730, 2002. | Zbl 0962.94011

S. N. Yu, W. H. Geng, and G. W. Wei. Treatment of geometric singularities in implicit solvent models. Journal of Chemical Physics, 126:244108, 2007.

S. N. Yu and G. W. Wei. Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. J. Comput. Phys., 227:602–632, 2007. | Zbl 1128.65103

S. N. Yu, Y. C. Zhou, and G. W. Wei. Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys., 224(2):729–756, 2007. | Zbl 1120.65333

G. Zaslavsky. Fractional kinetic equation for hamiltonian chaos.chaotic advection, tracer dynamics and turbulent dispersion. Phys.D, 76:110–122, 1994. | Zbl 1194.37163

Y. Zhang, C. Bajaj, and G. Xu. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Communications in Numerical Methods in Engineering, 25:1–18, 2009. | Zbl 1158.65314

Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation models of biomolecular structures. Computer Aided Geometric Design, 23(6):510–30, 2006. [Crossref][PubMed] | Zbl 1098.92034

S. Zhao and G. W. Wei. High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys., 200(1):60–103, 2004. | Zbl 1050.78018

Q. Zheng, D. Chen, and G. W. Wei. Second-order Poisson-Nernst-Planck solver for ion transport. Journal of Comput. Phys., 230:5239–5262, 2011. | Zbl 1222.82073

Q. Zheng and G. W. Wei. Poisson-Boltzmann-Nernst-Planck model. Journal of Chemical Physics, 134:194101, 2011.

Q. Zheng, S. Y. Yang, and G. W. Wei. Molecular surface generation using PDE transform. International Journal for Numerical Methods in Biomedical Engineering, 28:291–316, 2012. | Zbl 1244.92024

Y. C. Zhou and G. W. Wei. On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys., 219(1):228–246, 2006. | Zbl 1105.65108

Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei. High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys., 213(1):1–30, 2006. | Zbl 1089.65117