Lagrange’s Four-Square Theorem
Yasushige Watase
Formalized Mathematics, Tome 22 (2014), p. 105-110 / Harvested from The Polish Digital Mathematics Library

This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23]. This theorem is item #19 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268883
@article{bwmeta1.element.doi-10_2478_forma-2014-0012,
     author = {Yasushige Watase},
     title = {Lagrange's Four-Square Theorem},
     journal = {Formalized Mathematics},
     volume = {22},
     year = {2014},
     pages = {105-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_forma-2014-0012}
}
Yasushige Watase. Lagrange’s Four-Square Theorem. Formalized Mathematics, Tome 22 (2014) pp. 105-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_forma-2014-0012/

[1] Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge University Press, 1984. | Zbl 0554.10001

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.

[3] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.

[4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990. | Zbl 06213858

[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

[7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.

[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.

[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.

[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317–321, 1998.

[14] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1980. | Zbl 0020.29201

[15] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.

[16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.

[17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.

[18] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181–187, 2007. doi:10.2478/v10037-007-0022-7.[Crossref]

[19] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.

[20] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247–252, 2008. doi:10.2478/v10037-008-0029-8.[Crossref]

[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[23] Hideo Wada. The World of Numbers (in Japanese). Iwanami Shoten, 1984.

[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.