An original result about Hilbert Positive Propositional Calculus introduced in [11] is proven. That is, it is shown that the pseudo-canonical formulae of that calculus (and hence also the canonical ones, see [17]) are a subset of the classical tautologies.
@article{bwmeta1.element.doi-10_2478_forma-2014-0011, author = {Marco B. Caminati and Artur Korni\l owicz}, title = {Pseudo-Canonical Formulae are Classical}, journal = {Formalized Mathematics}, volume = {22}, year = {2014}, pages = {99-103}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_forma-2014-0011} }
Marco B. Caminati; Artur Korniłowicz. Pseudo-Canonical Formulae are Classical. Formalized Mathematics, Tome 22 (2014) pp. 99-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_forma-2014-0011/
[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
[5] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
[6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
[9] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155–167, 2011. doi:10.2478/v10037-011-0025-2.[Crossref] | Zbl 1276.03030
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1): 69–72, 1999.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[13] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
[16] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133–137, 1999.
[17] Andrzej Trybulec. The canonical formulae. Formalized Mathematics, 9(3):441–447, 2001.
[18] Andrzej Trybulec. Classes of independent partitions. Formalized Mathematics, 9(3): 623–625, 2001.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
[22] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.