Differentiation in Normed Spaces
Noboru Endou ; Yasunari Shidama
Formalized Mathematics, Tome 21 (2013), p. 95-102 / Harvested from The Polish Digital Mathematics Library

In this article we formalized the Fréchet differentiation. It is defined as a generalization of the differentiation of a real-valued function of a single real variable to more general functions whose domain and range are subsets of normed spaces [14].

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:266646
@article{bwmeta1.element.doi-10_2478_forma-2013-0011,
     author = {Noboru Endou and Yasunari Shidama},
     title = {Differentiation in Normed Spaces},
     journal = {Formalized Mathematics},
     volume = {21},
     year = {2013},
     pages = {95-102},
     zbl = {1298.58009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_forma-2013-0011}
}
Noboru Endou; Yasunari Shidama. Differentiation in Normed Spaces. Formalized Mathematics, Tome 21 (2013) pp. 95-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_forma-2013-0011/

[1] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[11] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.

[12] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.

[13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

[14] Laurent Schwartz. Cours d’analyse. Hermann, 1981.[WoS]

[15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.

[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[21] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.