A complex polynomial is called a Hurwitz polynomial, if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical (analog or digital) networks. In this article we prove that a polynomial p can be shown to be Hurwitz by checking whether the rational function e(p)/o(p) can be realized as a reactance of one port, that is as an electrical impedance or admittance consisting of inductors and capacitors. Here e(p) and o(p) denote the even and the odd part of p [25].
@article{bwmeta1.element.doi-10_2478_forma-2013-0005, author = {Agnieszka Rowinska-Schwarzweller and Christoph Schwarzweller}, title = {A Test for the Stability of Networks}, journal = {Formalized Mathematics}, volume = {21}, year = {2013}, pages = {47-53}, zbl = {1293.30016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_forma-2013-0005} }
Agnieszka Rowinska-Schwarzweller; Christoph Schwarzweller. A Test for the Stability of Networks. Formalized Mathematics, Tome 21 (2013) pp. 47-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_forma-2013-0005/
[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
[9] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.
[11] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[12] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[13] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.
[14] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
[15] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[16] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[17] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[18] Christoph Schwarzweller. Introduction to rational functions. Formalized Mathematics, 20 (2):181-191, 2012. doi:10.2478/v10037-012-0021-1.[Crossref] | Zbl 1285.26027
[19] Christoph Schwarzweller and Agnieszka Rowinska-Schwarzweller. Schur’s theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006. doi:10.2478/v10037-006-0017-9.[Crossref]
[20] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. FormalizedMathematics, 1(3):445-449, 1990.
[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Rolf Unbehauen. Netzwerk- und Filtersynthese: Grundlagen und Anwendungen. Oldenbourg-Verlag, fourth edition, 1993.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[27] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.