Solution to an open problem about a transformation on the space of copulas
Fabrizio Durante ; Juan Fernández-Sánchez ; Wolfgang Trutschnig
Dependence Modeling, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

We solve a recent open problem about a new transformation mapping the set of copulas into itself. The obtained mapping is characterized in algebraic terms and some limit results are proved.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266603
@article{bwmeta1.element.doi-10_2478_demo-2014-0005,
     author = {Fabrizio Durante and Juan Fern\'andez-S\'anchez and Wolfgang Trutschnig},
     title = {Solution to an open problem about a transformation on the space of copulas},
     journal = {Dependence Modeling},
     volume = {2},
     year = {2014},
     zbl = {1328.62304},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0005}
}
Fabrizio Durante; Juan Fernández-Sánchez; Wolfgang Trutschnig. Solution to an open problem about a transformation on the space of copulas. Dependence Modeling, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0005/

[1] C. Alsina, A. Damas, and J. J. Quesada-Molina. Some functionals for copulas. Int. J. Math. Math. Sci., 14(1):45–54, 1991. | Zbl 0732.62047

[2] C. Bernard, X. Jiang, and S. Vanduffel. A note on “Improved Fréchet bounds and model-free pricing of multi-asset options” by Tankov (2011). J. Appl. Probab., 49(3):866–875, 2012. | Zbl 1259.60022

[3] B. De Baets, H. De Meyer, J. Kalická, and R. Mesiar. Flipping and cyclic shifting of binary aggregation functions. Fuzzy Sets Syst., 160(6):752–765, 2009. | Zbl 1175.62002

[4] E. Di Bernardino and D. Rullière. On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Modeling, 1:1–36, 2013. | Zbl 1287.62005

[5] A. Dolati and M. Úbeda-Flores. Constructing copulas by means of pairs of order statistics. Kybernetika (Prague), 45(6):992– 1002, 2009. | Zbl 1200.62055

[6] F. Durante. A new class of symmetric bivariate copulas. J. Nonparametr. Stat., 18(7-8):499–510, (2007), 2006. | Zbl 1122.62039

[7] F. Durante, J. Fernández-Sánchez, and R. Pappadà. Copulas, diagonals and tail dependence. Fuzzy Sets Syst., in press, 2015.

[8] F. Durante, J. Fernández-Sánchez, and C. Sempi. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insurance Math. Econom., 53:897–905, 2013. | Zbl 1290.62040

[9] F. Durante, R. Foschi, and P. Sarkoci. Distorted copulas: constructions and tail dependence. Comm. Statist. Theory Methods, 39(12):2288–2301, 2010. | Zbl 1194.62075

[10] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi. Semilinear copulas. Fuzzy Sets Syst., 159(1):63–76, 2008. | Zbl 1274.62108

[11] C. Genest, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and C. Sempi. A characterization of quasi-copulas. J. Multivariate Anal., 69(2):193–205, 1999. | Zbl 0935.62059

[12] E. P. Klement, R. Mesiar, and E. Pap. Transformations of copulas. Kybernetika (Prague), 41(4):425–434, 2005. | Zbl 1243.62019

[13] A. Kolesárová and R. Mesiar. On linear and quadratic constructions of aggregation functions. Fuzzy Sets Syst., in press, 2015.

[14] A. Kolesárová, R. Mesiar, and J. Kalická. On a new construction of 1–Lipschitz aggregation functions, quasi–copulas and copulas. Fuzzy Sets Syst., 226:19–31, 2013. | Zbl 1284.68550

[15] R. Mesiar and A. Stupnanová. Open problems from the 12th International Conference on Fuzzy Sets Theory and Its Applications. Fuzzy Sets Syst., in press, 2015.

[16] F. Michiels and A. De Schepper. How to improve the fit of Archimedean copulas by means of transforms. Statist. Papers, 53(2):345–355, 2012. | Zbl 06084557

[17] P. Mikusinski and M. D. Taylor. Some approximations of n-copulas. Metrika, 72(3):385–414, 2010. | Zbl 1197.62050

[18] P. M. Morillas. A method to obtain new copulas from a given one. Metrika, 61(2):169–184, 2005. | Zbl 1079.62056

[19] R. B. Nelsen. An introduction to copulas. Springer Series in Statistics. Springer, New York, second edition, 2006.

[20] R. B. Nelsen and M. Úbeda-Flores. The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. C. R.Math. Acad. Sci. Paris, 341(9):583–586, 2005. | Zbl 1076.62053

[21] P. Tankov. Improved Fréchet bounds and model-free pricing of multi-asset options. J. Appl. Probab., 48(2):389–403, 2011. | Zbl 1219.60016

[22] E. A. Valdez and Y. Xiao. On the distortion of a copula and its margins. Scand. Actuar. J., 4:292–317, 2011. | Zbl 1277.62140