Copula-based dependence measures
Eckhard Liebscher
Dependence Modeling, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

The aim of the present paper is to examine two wide classes of dependence coefficients including several well-known coefficients, for example Spearman’s ρ, Spearman’s footrule, and the Gini coefficient. There is a close relationship between the two classes: The second class is obtained by a symmetrisation of the coefficients in the former class. The coefficients of the first class describe the deviation from monotonically increasing dependence. The construction of the coefficients can be explained by geometric arguments. We introduce estimators of the dependence coefficients and prove their asymptotic normality.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267476
@article{bwmeta1.element.doi-10_2478_demo-2014-0004,
     author = {Eckhard Liebscher},
     title = {Copula-based dependence measures},
     journal = {Dependence Modeling},
     volume = {2},
     year = {2014},
     zbl = {1328.62368},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0004}
}
Eckhard Liebscher. Copula-based dependence measures. Dependence Modeling, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0004/

[1] Behboodian, J; Dolati, A.; Úbeda-Flores, M. (2007). A multivariate version of Gini’s rank association coeflcient. Statist. Papers 48, 295-304. | Zbl 1110.62081

[2] Cifarelli, D.M.; Conti, P.L.; Regazzini, E. (1996). On the asymptotic distribution of a general measure of monotone dependence. Ann. Statist. 24, 1386-1399. | Zbl 0862.62014

[3] Dolati, A.; Úbeda-Flores, M. (2006). On measures of multivariate concordance. J. Probab. Statist. Sci. 4, 147-163. | Zbl 1143.62321

[4] Gaißer, S.; Ruppert, M.; Schmid, F. (2010). A multivariate version of Hoeffding’s Phi-Square. J. Multivariate Anal. 101, 2571- 2586. | Zbl 1198.62056

[5] Genest, C.; Nešlehová, J.; Rémillard (2013). On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data. J. Multivariate Anal. 117, 214-228. | Zbl 06244326

[6] Grothe, O.; Schmid, F.; Schnieders, J.; Segers, J. (2014). Measuring Association between Random Vectors. J. Multivariate Anal. 123, 96-110. | Zbl 1278.62090

[7] Joe, H. (1990). Multivariate concordance. J. Multivariate Anal. 35, 12-30. | Zbl 0741.62061

[8] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall. | Zbl 0990.62517

[9] Nelsen, R.B. (2006). An Introduction to Copulas, Springer, Second Edition. | Zbl 1152.62030

[10] Scarsini, M. (1984). On measures of concordance. Stochastica 8, 201-218. | Zbl 0582.62047

[11] Schmid, F., Schmidt, R. (2007a). Multivariate extensions of Spearman’s rho and related statistics. Statist. Probab. Lett. 77, 407-416. | Zbl 1108.62056

[12] Schmid, F., Schmidt, R. (2007b). Nonparametric inference onmultivariate versions of Blomqvist’s beta and relatedmeasures of tail dependence. Metrika 66, 323-354. | Zbl 06493983

[13] Schmid, F.; Schmidt, R.; Blumentritt, T.; Gaißer, S.; Ruppert, M. (2010). Copula-based measures of multivariate association. in F. Durante, W. Härdle, P. Jaworski, T. Rychlik (eds.) Copula Theory and Its Applications. Springer Berlin, 2010.

[14] Schweizer, B.; Wolff, E.F. (1981). On nonparametric measures of dependence for random variables. Ann. Statist. 9, 879-885. | Zbl 0468.62012

[15] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. | Zbl 0538.62002

[16] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8, 229-231. | Zbl 0100.14202

[17] Taylor, M. D. (2007). Multivariate measures of concordance. Ann. Inst. Statist. Math. 59, 789-806. | Zbl 1131.62054

[18] Úbeda-Flores, M. (2005). Multivariate versions of Blomqvist’s beta and Spearman’s footrule. Ann. lnst. Statist. Math. 57, 781-788. | Zbl 1093.62060

[19] Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press. | Zbl 0910.62001