Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology
Anne Dutfoy ; Sylvie Parey ; Nicolas Roche
Dependence Modeling, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266769
@article{bwmeta1.element.doi-10_2478_demo-2014-0003,
     author = {Anne Dutfoy and Sylvie Parey and Nicolas Roche},
     title = {Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology},
     journal = {Dependence Modeling},
     volume = {2},
     year = {2014},
     zbl = {1291.62105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0003}
}
Anne Dutfoy; Sylvie Parey; Nicolas Roche. Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology. Dependence Modeling, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0003/

[1] Beirlant, J., Y. Goegebeur, J. Teugels, and J. Segers (2004). Statistics of Extremes, Theory and Applications. John Wiley & Sons, Ltd., Chichester. | Zbl 1070.62036

[2] Berman, S. M. (1961/1962). Convergence to bivariate limiting extreme value distributions. Ann. Inst. Statist. Math. 13, 217–223. | Zbl 0119.15103

[3] Bruun, J. T. and J. A. Tawn (1998). Comparison of approaches for estimating the probability of coastal flooding. J. R. Stat. Soc. Ser. C Appl. Stat. 47(3), 405–423. | Zbl 0905.62123

[4] Buishand, T. (1989). Statistics of extremes in climatology. Statistica Neerlandica 43(1), 1–30. [Crossref] | Zbl 0668.62085

[5] Buishand, T. A. (1991). Extreme rainfall estimation by combining data from several sites. Hydrological Sciences Journal 36(4), 345–365. [Crossref]

[6] Capéraà, P. and A.-L. Fougères (2000). Estimation of a bivariate extreme value distribution. Extremes 3(4), 311–329 (2001). [Crossref] | Zbl 1008.62053

[7] Capéraà, P., A.-L. Fougères, and C. Genest (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3), 567–577. [Crossref] | Zbl 1058.62516

[8] Carter, D. J. T. and P. G. Challenor (1981). Estimating return values of environmental parameters. Q. J. R. Meteorological Soc. 107(451), 259–266.

[9] Chebana, F. and T. B. M. J. Ouarda (2011). Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1), 63–78. [WoS][Crossref]

[10] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag London, Ltd., London. | Zbl 0980.62043

[11] Coles, S. G. and J. A. Tawn (1994). Statistical methods for multivariate extremes: An application to structural design. J. R. Stat. Soc. Ser. C Appl. Stat. 43(1), pp. 1–48. [Crossref] | Zbl 0825.62717

[12] Dales, M. Y. and D. W. Reed (2001). Regional flood and storm hazard assessment. Wallingford, Institute of Hydrology.

[13] de Carvalho, M. and A. Ramos (2012). Bivariate extreme statistics, II. REVSTAT 10(1), 83–107. | Zbl 1297.60034

[14] de Haan, L. and J. de Ronde (1998). Sea and wind: multivariate extremes at work. Extremes 1(1), 7–45. [Crossref] | Zbl 0921.62144

[15] de Haan, L. and T. T. Pereira (2006). Spatial extremes: models for the stationary case. Ann. Statist. 34(1), 146–168. [Crossref] | Zbl 1104.60021

[16] Deheuvels, P. (1991). On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statist. Probab. Lett. 12(5), 429–439. [Crossref] | Zbl 0749.62033

[17] Di Bernardino, E., V. Maume-Deschamps, and C. Prieur (2013). Estimating a bivariate tail: a copula based approach. J. Multivariate Anal. 119, 81–100. [WoS] | Zbl 06244391

[18] Dupuis, D. J. and B. L. Jones (2006). Multivariate extreme value theory and its usefulness in understanding risk. N. Am. Actuar. J. 10(4), 1–27.

[19] Durante, F. and G. Salvadori (2010). On the construction of multivariate extreme value models via copulas. Environmetrics 21(2), 143–161. [WoS]

[20] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer. | Zbl 0873.62116

[21] Falk, M. and R. Michel (2006). Testing for tail independence in extreme value models. Ann. Inst. Statist. Math. 58(2), 261–290. [Crossref] | Zbl 1095.62060

[22] Galambos, J., J. Lechner, and E. Simiu (Eds.) (1994). Extreme Value Theory and Applications, Dordrecht. Kluwer. | Zbl 0803.00015

[23] Genest, C. and L.-P. Rivest (1989). A characterization of Gumbel’s family of extreme value distributions. Statist. Probab. Lett. 8(3), 207–211. [Crossref] | Zbl 0701.62060

[24] Gumbel, E. J. (1960). Bivariate exponential distributions. J. Amer. Statist. Assoc. 55, 698–707. [Crossref] | Zbl 0099.14501

[25] Hall, P. and N. Tajvidi (2000). Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6(5), 835–844. [Crossref][WoS] | Zbl 1067.62540

[26] Heffernan, J. E. (2000). A directory of coefficients of tail dependence. Extremes 3(3), 279–290. [Crossref] | Zbl 0979.62040

[27] Hüsler, J. and D. Li (2009). Testing asymptotic independence in bivariate extremes. J. Statist. Plann. Inference 139(3), 990–998. [Crossref] | Zbl 1156.62332

[28] Leadbetter, M. R., G. Lindgren, and H. Rootzén (1983). Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York-Berlin. | Zbl 0518.60021

[29] Ledford, A. W. and J. A. Tawn (1996). Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187. [Crossref] | Zbl 0865.62040

[30] Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. J. Bank. Financ. 24(7), 1097 – 1130. [Crossref]

[31] Maulik, K., S. Resnick, and H. Rootzén (2002). Asymptotic independence and a network traffic model. J. Appl. Probab. 39(4), 671–699. | Zbl 1090.90017

[32] Mole, N., C. W. Anderson, S. Nadarajah, and C. Wright (1995). A generalized pareto distribution model for high concentrations in short-range atmospheric dispersion. Environmetrics 6(6), 595–606. [Crossref]

[33] Morton, I., J. Bowers, and G. Mould (1997). Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Engineering 31(1–4), 305 – 326. [Crossref]

[34] Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. Second edition. | Zbl 1152.62030

[35] Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle (2010). Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7-8), 698–718. [Crossref][WoS]

[36] Poon, S.-H., M. Rockinger, and J. Tawn (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Rev. Financ. Stud. 17(2), 581–610.

[37] Resnick, S. and H. Rootzén (2000). Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10(3), 753–778. | Zbl 1083.60521

[38] Rincón, A. (2012). An index for climate change: a multivariate time series approach. Environmetrics 23(7), 617–622. [WoS][Crossref]

[39] Salvadori, G., C. D. Michele, N. Kottegoda, and R. Rosso (2007). Extremes in Nature - An Approach Using Copulas. New York: Springer.

[40] Schlather, M. (2001). Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution. Statist. Probab. Lett. 53(3), 325–329. [Crossref] | Zbl 0982.62052

[41] Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo 11, 195–210. | Zbl 0095.33703

[42] Starica, C. (1999). Multivariate extremes for models with constant conditional correlations. J. Empir. Financ. 6(5), 515 – 553. [Crossref]

[43] Tawn, J. A. (1988). Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415. [Crossref] | Zbl 0653.62045

[44] Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77(2), pp. 245–253. [Crossref][WoS] | Zbl 0716.62051

[45] Tsai, Y.-L., D. J. Dupuis, and D. J. Murdoch (2013). A robust test for asymptotic independence of bivariate extremes. Statistics 47(1), 172–183. [WoS][Crossref] | Zbl 06181134

[46] Tsai, Y.-L., D. J. Murdoch, and D. J. Dupuis (2011). Influence measures and robust estimators of dependence in multivariate extremes. Extremes 14(4), 343–363. [WoS][Crossref] | Zbl 1329.62148

[47] Weller, G. B., D. S. Cooley, and S. R. Sain (2012). An investigation of the pineapple express phenomenon via bivariate extreme value theory. Environmetrics 23(5), 420–439. [Crossref][WoS]

[48] Zhang, D., M. T. Wells, and L. Peng (2008). Nonparametric estimation of the dependence function for a multivariate extreme value distribution. J. of Multivariate Anal. 99(4), 577 – 588. | Zbl 1333.62140

[49] Zhang, Z., Y. Qi, and X. Ma (2011). Asymptotic independence of correlation coefficients with application to testing hypothesis of independence. Electron. J. Statist. 5, 342–372.[Crossref] | Zbl 1274.62401