There is an infinite exchangeable sequence of random variables {Xk}k∈ℕ such that each finitedimensional distribution follows a min-stable multivariate exponential law with Galambos survival copula, named after [7]. A recent result of [15] implies the existence of a unique Bernstein function Ψ associated with {Xk}k∈ℕ via the relation Ψ(d) = exponential rate of the minimum of d members of {Xk}k∈ℕ. The present note provides the Lévy–Khinchin representation for this Bernstein function and explores some of its properties.
@article{bwmeta1.element.doi-10_2478_demo-2014-0002, author = {Jan-Frederik Mai}, title = {A note on the Galambos copula and its associated Bernstein function}, journal = {Dependence Modeling}, volume = {2}, year = {2014}, zbl = {06313233}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0002} }
Jan-Frederik Mai. A note on the Galambos copula and its associated Bernstein function. Dependence Modeling, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2014-0002/
[1] S. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 1–66 (1929). | Zbl 55.0142.07
[2] L. Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahr. Verw. Geb. 57:1 (1981) pp. 39–71. | Zbl 0464.60016
[3] A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, J. Multivariate Anal. 100:7 (2009) pp. 1521–1537. [WoS][Crossref] | Zbl 1165.62038
[4] B. De Finetti, Funzione caratteristica di un fenomeno allatorio, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1931) pp. 251–299.
[5] B. De Finetti, La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré Probab. Stat. 7 (1937) pp. 1–68.
[6] K. Es-Sebaiy, Y. Ouknine, How rich is the class of processes which are infinitely divisible with respect to time, Statist. Probab. Lett. 78 (2008) pp. 537–547. [WoS][Crossref] | Zbl 1216.60042
[7] J. Galambos, Order statistics of samples from multivariate distributions, J. Amer. Statist. Assoc. 70:351 (1975) pp. 674– 680. | Zbl 0315.62022
[8] G. Gudendorf, J. Segers, Extreme-value copulas, in Copula Theory and Its Applications – Lecture Notes in Statistics, Springer (2010) pp. 127–145. | Zbl 06085266
[9] A. Hakassou, Y. Ouknine, A contribution to the study of IDT processes, Working paper, retrievable from http://univi.net/spas/spada2010/tc-ouknine.pdf (2012).
[10] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z. 9 (1921) pp. 74–109. [Crossref] | Zbl 48.2005.01
[11] F. Hausdorff, Momentenproblem für ein endliches Intervall, Math. Z. 16 (1923) pp. 220–248. [Crossref] | Zbl 49.0193.01
[12] E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955) pp. 470–501. | Zbl 0066.29604
[13] H. Joe, Multivariate models and dependence concepts, Chapman & Hall/CRC (1997). | Zbl 0990.62517
[14] J.-F. Mai, M. Scherer, Lévy-frailty copulas, J. Multivariate Anal. 100 (2009) pp. 1567–1585. [Crossref] | Zbl 1162.62048
[15] J.-F. Mai, M. Scherer, Characterization of extendible distributions with exponential minima via stochastic processes that are infinitely divisible with respect to time, Extremes, in press, DOI 10.1007/s10687-013-0175-4 (2013). [Crossref]
[16] R. Mansuy, On processes which are infinitely divisible with respect to time, Working paper, retrievable from http://arxiv.org/abs/math/0504408 (2005).
[17] P. Ressel, De Finetti type theorems: an analytical approach, Ann. Probab. 13 (1985) pp. 898–922. [Crossref] | Zbl 0579.60012
[18] K.-I. Sato, Lévy processes and infinitely divisible laws, Cambridge University Press (1999).
[19] R. Schilling, R. Song, Z. Vondracek, Bernstein functions, De Gruyter (2010).