Despite of its many shortcomings, Pearson’s rho is often used as an association measure for stock returns. A conditional version of Spearman’s rho is suggested as an alternative measure of association. This approach is purely nonparametric and avoids any kind of model misspecification. We derive hypothesis tests for the conditional rank-correlation coefficients particularly arising in bull and bear markets and study their finite-sample performance by Monte Carlo simulation. Further, the daily returns on stocks contained in the German stock index DAX 30 are analyzed. The empirical study reveals significant differences in the dependence of stock returns in bull and bear markets.
@article{bwmeta1.element.doi-10_2478_demo-2013-0005, author = {Jadran Dobric and Gabriel Frahm and Friedrich Schmid}, title = {Dependence of Stock Returns in Bull and Bear Markets}, journal = {Dependence Modeling}, volume = {1}, year = {2013}, pages = {94-110}, zbl = {06297674}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2013-0005} }
Jadran Dobric; Gabriel Frahm; Friedrich Schmid. Dependence of Stock Returns in Bull and Bear Markets. Dependence Modeling, Tome 1 (2013) pp. 94-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2013-0005/
[1] A. Ang and J. Chen (2002), ‘Asymmetric correlations of equity portfolios’, J. Financ. Econ. 63, pp. 443–494. [Crossref]
[2] U. Cherubini, E. Luciano, and W. Vecchiato (2004), Copula Methods in Finance, John Wiley. | Zbl 1163.62081
[3] J. Dobric and F. Schmid (2005), ‘Nonparametric estimation of the lower tail dependence λL in bivariate copulas’, J. Appl. Stat. 32, pp. 387–407. [Crossref] | Zbl 1121.62364
[4] P. Doukhan, J.D. Fermanian, and G. Lang (2009), ‘An empirical central limit theorem with applications to copulas under weak dependence’, Stat. Inference Stoch. Process. 12, pp. 65–87. [Crossref] | Zbl 1333.62207
[5] P. Embrechts, A.J. McNeil, and D. Straumann (2002), ‘Correlation and dependence in risk management: properties and pitfalls’, in: M. Dempster, ed., ‘Risk Management: Value at Risk and Beyond’, Cambridge University Press.
[6] C.B. Erb, C.R. Harvey, and T.E. Viskanta (1994), ‘Forecasting international equity correlations’, Financ. Anal. J. 50, pp. 32–45. [Crossref]
[7] I. Fortin and C. Kuzmics (2002), ‘Tail-dependence in stock return pairs’, Int. J. Intell. Syst. Account. Finance Manag. 11, pp. 89–107. [Crossref]
[8] G. Frahm, M. Junker, and R. Schmidt (2005), ‘Estimating the tail-dependence coefficient: properties and pitfalls’, Insurance Math. Econom. 37, pp. 80–100. [Crossref] | Zbl 1101.62012
[9] P. Hall, J.L. Horowitz, and J. Bing-Yi (1995), ‘On blocking rules for the bootstrap with dependent data’, Biometrika 82, pp. 561–574. | Zbl 0830.62082
[10] Y. Hong, J. Tu, and G. Zhou (2007), ‘Asymmetries in stock returns: statistical tests and economic evaluation’, Rev. Financ. Stud. 20, pp. 1547–1581. [Crossref]
[11] H. Hult and F. Lindskog (2002), ‘Multivariate extremes, aggregation and dependence in elliptical distributions’, Adv. in Appl. Probab. 34, pp. 587–608. | Zbl 1023.60021
[12] P. Jaworski and M. Pitera (2013), ‘On spatial contagion and multivariate GARCH models’, Appl. Stoch. Models Bus. Ind. DOI: 10.1002/asmb.1977. [Crossref]
[13] H. Joe (1997), Multivariate Models and Dependence Concepts, Chapman & Hall. | Zbl 0990.62517
[14] M. Junker and A. May (2005), ‘Measurement of aggregate risk with copulas’, Econom. J. 8, pp. 428–454. | Zbl 1125.91351
[15] A. Juri and M. Wüthrich (2002), ‘Copula convergence theorems for tail events’, Insurance Math. Econom. 30, pp. 405–420. [Crossref] | Zbl 1039.62043
[16] H.R. Künsch (1989), ‘The jackknife and the bootstrap for general stationary observations’, Ann. Statist. 17, pp. 1217–1241. [Crossref] | Zbl 0684.62035
[17] A.J. McNeil, R. Frey, and P. Embrechts (2005), Quantitative Risk Management, Princeton University Press. | Zbl 1089.91037
[18] R.B. Nelsen (2006), An Introduction to Copulas, Springer, second edition. | Zbl 1152.62030
[19] A.J. Patton (2004), ‘On the out-of-sample importance of skewness and asymmetric dependence for asset allocation’, J. Financ. Econometrics 2, pp. 130–168. [Crossref]
[20] D.N. Politis (2003), ‘The impact of bootstrap methods on time series analysis’, Statist. Sci. 18, pp. 219–230. [Crossref] | Zbl 1332.62340
[21] J.P. Romano and M. Wolf (2005), ‘Stepwise multiple testing as formalized data snooping’, Econometrica 73, pp. 1237–1282. | Zbl 1153.62310
[22] F. Schmid and R. Schmidt (2006), ‘Multivariate extensions of Spearman’s rho and related statistics’, Statist. Probab. Lett. 77, pp. 407–416. [WoS] | Zbl 1108.62056
[23] P. Silvapulle and C.W.J. Granger (2001), ‘Large returns, conditional correlation and portfolio diversification: a value-at-risk approach’, Quant. Finance 1, pp. 542–551. [Crossref]
[24] A. Sklar (1959), ‘Fonctions de répartition à n dimensions et leurs marges’, Publ. Inst. Statist. Univ. Paris 8, 229–231.
[25] A.W. van der Vaart (1998), Asymptotic Statistics, Cambridge University Press. | Zbl 0910.62001
[26] B. Vaz de Melo Mendes (2005), ‘Asymmetric extreme interdependence in emerging equity markets’, Appl. Stoch. Models Bus. Ind. 21, pp. 483–498. | Zbl 1101.91330