Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence
Carole Bernard ; Yuntao Liu ; Niall MacGillivray ; Jinyuan Zhang
Dependence Modeling, Tome 1 (2013), p. 37-53 / Harvested from The Polish Digital Mathematics Library

Nelsen et al. [20] find bounds for bivariate distribution functions when there are constraints on the values of its quartiles. Tankov [25] generalizes this work by giving explicit expressions for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0; 1]2 are known. He shows that they are quasi-copulas and not necessarily copulas. Tankov [25] and Bernard et al. [3] both give sufficient conditions for these bounds to be copulas. In this note we give weaker sufficient conditions to ensure that both bounds are simultaneously copulas. Furthermore, we develop a novel application to quantitative risk management by computing bounds on a bivariate risk measure. This can be useful in optimal portfolio selection, in reinsurance, in pricing bivariate derivatives or in determining capital requirements when only partial information on dependence is available.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267378
@article{bwmeta1.element.doi-10_2478_demo-2013-0002,
     author = {Carole Bernard and Yuntao Liu and Niall MacGillivray and Jinyuan Zhang},
     title = {Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence},
     journal = {Dependence Modeling},
     volume = {1},
     year = {2013},
     pages = {37-53},
     zbl = {06297671},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2013-0002}
}
Carole Bernard; Yuntao Liu; Niall MacGillivray; Jinyuan Zhang. Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence. Dependence Modeling, Tome 1 (2013) pp. 37-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2013-0002/

[1] Bernard, C., Boyle, P.P., Vanduffel S. (2011). “Explicit Representation of Cost-Efficient Strategies”, Working paper available at SSRN.

[2] Bernard, C., Chen, J.S., Vanduffel S. (2013). “Optimal Portfolio under Worst-State Scenarios”, Quant. Finance, to appear. | Zbl 1308.91136

[3] Bernard, C., Jiang, X., Vanduffel S. (2012). Note on“ Improved Fréchet bounds and model-free pricing of multi-asset options” by Tankov (2011)”, J. of Appl. Probab., 49(3), 866-875. | Zbl 1259.60022

[4] Bernard, C., Jiang, X., Wang R. (2013). “Risk Aggregation with Dependence Uncertainty”, Working paper. | Zbl 1291.91090

[5] Bernard, C., Vanduffel S. (2011). “Optimal Investment under Probability Constraints”, AfMath proceedings.

[6] Boyle, P.P., and W. Tian. 2007, “Portfolio Management with Constraints," Math. Finance, 17(3), 319-343. [WoS] | Zbl 1186.91191

[7] Carley, H., Taylor, M.D. (2002). “A new proof of Sklar’s Theorem” in C.M. Cuadras, J. Fortiana and J.A. Rodriguez- Lallena, editors, Distributions with Given Marginals and Statistical Modelling, 29-34, Kluwer Acad. Publ., Dodrecht. | Zbl 1137.62336

[8] Durante, F., Jaworski, P. (2010). “A new characterization of bivariate copulas” Comm. Statist. Theory Methods, 39(16), 2901-2912. | Zbl 1203.62101

[9] Durante, F., Mesiar, R., Papini, P.-L., Sempi, C. (2007). “2-increasing binary aggregation operators”, Inform. Sci., 177(1), 111-129. [WoS] | Zbl 1142.68541

[10] Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). “Model uncertainty and VaR aggregation”. J. of Banking and Finance, 37(8), 2750-2764. [WoS]

[11] Fréchet, M. (1951). “Sur les tableaux de corrélation dont les marges sont données,”Ann. Univ. Lyon Sect.A, Series 3, 14, 53-77. | Zbl 0045.22905

[12] Genest, C., Quesada-Molina, J.J., Rodri´guez, J.A., Sempi, C. (1999). “A characterization of quasi-copulas”, J. of Multivariate Anal., 69(2), 193-205. | Zbl 0935.62059

[13] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E. (2009). “Aggregation functions,” Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, (No. 127).

[14] Hoeffding, W. (1940). “Masstabinvariante Korrelationstheorie,” Schriften des mathematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin 5, 179-233.

[15] Kolesárová, A., Mordelová, J., Muel., E. (2004). “Kernel aggregation operators and their marginals,” Fuzzy Sets Syst., 142(1), 35-50. | Zbl 1043.03040

[16] Mai, J.-F., Scherer, J., (2012). “Simulating Copulas,” World Scientific, Singapore.

[17] Meilijson, I., Nadas, A. (1979). “Convex majorization with an application to the length of critical paths,” J. of Appl. Probab., 16, 671-677. | Zbl 0417.60025

[18] Nelsen, R. (2006). “An introduction to Copulas”, 2nd edition, Springer series in Statistics. | Zbl 1152.62030

[19] Nelsen, R., Quesada-Molina, J., Rodriguez-Lallena, J. and Úbeda-Flores, M. (2001). “Bounds on Bivariate Distribution Functions with Given Margins and Measures of Associations”, Comm. Statist. Theory Methods. 30(6), 1155-1162. [WoS] | Zbl 1008.62605

[20] Nelsen, R., Quesada-Molina, J., Rodriguez Lallena, J. and Ubeda-Flores, M. (2004). “Best Possible Bounds on Sets of Bivariate Distribution Functions”, J. of Multivariate Anal., 90, 348-358. | Zbl 1057.62038

[21] Rachev, S.T. and Rüschendorf, L. (1994). “Solution of some transportation problems with relaxed or additional constraints”, SIAM J. Control Optim., 32, 673-689. | Zbl 0797.60019

[22] Rüschendorf, L. (1983). “Solution of a Statistical Optimization Problem by Rearrangement Methods”, Biometrika, 30, 55-61. | Zbl 0535.62008

[23] Sadooghi-Alvandi, S. M., Shishebor, Z., Mardani-Fard, H.A. (2013). “Sharp bounds on a class of copulas with known values at several points" Communications Statist. Theory Methods, 42(12), 2215-2228. [WoS] | Zbl 1319.62034

[24] Stoeber, J. and Czado, C. (2012). “Detecting regime switches in the dependence structure of high dimensional financial data”, forthcoming in Comput. Statist. Data Anal..

[25] Tankov, P., (2011). “Improved Fréchet bounds and model-free pricing of multi-asset options”, J. of Appl. Probab., 48, 389-403. | Zbl 1219.60016

[26] Tchen, A. H., (1980). “Inequalities for distributions with given margins”, Ann. of Appl. Probab., 8, 814–827. | Zbl 0459.62010