On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators
Elena Di Bernardino ; Didier Rullière
Dependence Modeling, Tome 1 (2013), p. 1-36 / Harvested from The Polish Digital Mathematics Library

We study the impact of certain transformations within the class of Archimedean copulas. We give some admissibility conditions for these transformations, and define some equivalence classes for both transformations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence classes, gives us new expressions of transformations and generators. Estimators deriving directly from these expressions are proposed and their convergence is investigated. We provide confidence bands for the estimated generators. Numerical illustrations show the empirical performance of these estimators.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267249
@article{bwmeta1.element.doi-10_2478_demo-2013-0001,
     author = {Elena Di Bernardino and Didier Rulli\`ere},
     title = {On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators},
     journal = {Dependence Modeling},
     volume = {1},
     year = {2013},
     pages = {1-36},
     zbl = {1287.62005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_demo-2013-0001}
}
Elena Di Bernardino; Didier Rullière. On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Modeling, Tome 1 (2013) pp. 1-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_demo-2013-0001/

[1] Alsina, C., Schweizer, B., and Frank, M. J. (2006). Associative functions: triangular norms and copulas. World Scientific. | Zbl 1100.39023

[2] Autin, F., Le Pennec, E., and Tribouley, K. (2010). Thresholding methods to estimate copula density. J. Multivariate Anal., 101(1):200–222. | Zbl 1177.62075

[3] Bienvenüe, A. and Rullière, D. (2011). Iterative adjustment of survival functions by composed probability distortions. Geneve Risk Ins. Rev., 37(2):156–179.

[4] Bienvenüe, A. and Rullière, D. (2012). On hyperbolic iterated distortions for the adjustment of survival functions. In Perna, C. and Sibillo, M., editors, Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 35–42. Springer Milan. | Zbl 1238.91080

[5] Brechmann, E. (2013). Sampling from Hierarchical Kendall Copulas. J. SFdS, 154(1):192–209. | Zbl 1316.62015

[6] Charpentier, A. and Segers, J. (2007). Lower tail dependence for Archimedean copulas: characterizations and pitfalls. Insurance Math. Econom., 40(3):525–532. | Zbl 1183.62086

[7] Chomette, T. (2003). Arbres et dérivée d’une fonction composée. draft paper, ENS, http: // www. math. ens. fr/ culturemath/ maths/ pdf/ analyse/ derivation. pdf .

[8] Crane, G. and van der Hoek, J. (2008). Using distortions of copulas to price synthetic CDOs. Insurance Math. Econom., 42(3):903 – 908. | Zbl 1141.91500

[9] Curtright, T. and Zachos, C. (2009). Evolution profiles and functional equations. J. Phys. A., 42(48):485208. | Zbl 1183.37165

[10] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Acad. Roy. Belg. Bull. Cl. Sci., 65(5):274–292. | Zbl 0422.62037

[11] Deheuvels, P. (1980). Non parametric tests of independence. In Raoult, J.-P., editor, Statistique non Paramétrique Asymptotique, volume 821 of Lecture Notes in Math., pages 95–107. Springer Berlin Heidelberg. | Zbl 0455.62031

[12] Di Bernardino, E. and Rullière, D. (2013). Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory. Insurance Math. Econom., 53(1):190 – 205. | Zbl 1284.62149

[13] Durante, F., Foschi, R., and Sarkoci, P. (2010). Distorted copulas: Constructions and tail dependence. Comm. Statist. Theory Methods, 39(12):2288–2301. [Crossref] | Zbl 1194.62075

[14] Durante, F. and Jaworski, P. (2008). Absolutely continuous copulas with given diagonal sections. Comm. Statist. Theory Methods, 37(18):2924–2942. [Crossref] | Zbl 1292.60019

[15] Durante, F. and Sempi, C. (2005). Copula and semicopula transforms. Int. J. Math. Math. Sci., 2005(4):645–655. | Zbl 1078.62055

[16] Durrleman, V., Nikeghbali, A., and Roncalli, T. (2000). A simple transformation of copulas. Technical report, Groupe de Research Operationnelle Credit Lyonnais.

[17] Embrechts, P. and Hofert, M. (2011). Comments on: Inference in multivariate Archimedean copula models. TEST, 20(2):263–270. [Crossref] | Zbl 06106915

[18] Embrechts, P. and Hofert, M. (2013). Statistical inference for copulas in high dimensions: A simulation study. ASTIN Bull., 43:81–95. | Zbl 1282.62146

[19] Erdely, A., González-Barrios, J. M., and Hernández-Cedillo, M. M. (2013). Frank’s condition for multivariate Archimedean copulas. Fuzzy Sets and Systems, In press(Available online). | Zbl 1315.62048

[20] Fermanian, J.-D., Radulovic, D., andWegkamp, M. (2004). Weak convergence of empirical copula processes. Bernoulli, 10(5):847–860. [Crossref] | Zbl 1068.62059

[21] Fischer, M. and Köck, C. (2012). Constructing and generalizing given multivariate copulas: A unifying approach. Statistics, 46(1):1–12. [Crossref] | Zbl 1314.62124

[22] Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. N. Am. Actuar. J., 2(1):1–25. | Zbl 1081.62564

[23] Genest, C., Ghoudi, K., and Rivest, L.-P. (1998). Discussion of “understanding relationships using copulas,” by edward frees and emiliano valdez, january 1998. N. Am. Actuar. J., 2(3):143–149.

[24] Genest, C., Masiello, E., and Tribouley, K. (2009). Estimating copula densities through wavelets. Insurance Math. Econom., 44(2):170–181. | Zbl 1167.91015

[25] Genest, C., Nešlehová, J., and Ziegel, J. (2011). Inference in multivariate Archimedean copula models. TEST, 20(2):223–256. [Crossref] | Zbl 1274.62399

[26] Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc., 88(423):1034–1043. [Crossref] | Zbl 0785.62032

[27] Hardy, M. (2006). Combinatorics of partial derivatives. Electron. J. Combin., 13(1) | Zbl 1080.05006

[28] Hernández-Lobato, J. M. and Suárez, A. (2011). Semiparametric bivariate Archimedean copulas. Comput. Statist. Data Anal., 55(6):2038–2058. [Crossref] | Zbl 1328.62367

[29] Hofert, M. (2008). Sampling Archimedean copulas. Comput. Statist. Data Anal., 52(12):5163 – 5174. [Crossref] | Zbl 05565089

[30] Hofert, M. (2011). Efficiently sampling nested Archimedean copulas. Comput. Statist. Data Anal., 55(1):57 – 70. [Crossref] | Zbl 1247.62132

[31] Hofert, M., Mächler, M., and McNeil, A. J. (2012). Likelihood inference for Archimedean copulas in high dimensions under known margins. J. Multivariate Anal., 110(0):133 – 150. | Zbl 1244.62073

[32] Hofert, M. and Pham, D. (2013). Densities of nested Archimedean copulas. J. Multivariate Anal., 118(0):37 – 52. | Zbl 1277.62138

[33] Jaworski, P. (2009). On copulas and their diagonals. Inform. Sci., 179(17):2863 – 2871. [Crossref] | Zbl 1171.62332

[34] Jaworski, P. and Rychlik, T. (2008). On distributions of order statistics for absolutely continuous copulas with applications to reliability. Kybernetika (Prague), 44(6):757–776. | Zbl 1180.60013

[35] Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivariate Anal., 94(2):401–419. | Zbl 1066.62061

[36] Juri, A. and Wüthrich, M. V. (2002). Copula convergence theorems for tail events. Insurance Math. Econom., 30(3):405–420. | Zbl 1039.62043

[37] Juri, A. and Wüthrich, M. V. (2003). Tail dependence from a distributional point of view. Extremes, 6(3):213–246. [Crossref] | Zbl 1049.62055

[38] Kim, G., Silvapulle, M. J., and Silvapulle, P. (2007). Comparison of semiparametric and parametric methods for estimating copulas. Comput. Statist. Data Anal., 51(6):2836–2850. [Crossref] | Zbl 1161.62364

[39] Klement, E. P., Mesiar, R., and Pap, E. (2005a). Archimax copulas and invariance under transformations. C. R. Math. Acad. Sci. Paris, 340(10):755 – 758. | Zbl 1126.62040

[40] Klement, E. P., Mesiar, R., and Pap, E. (2005b). Transformations of copulas. Kybernetika (Prague), 41(4):425 –434. | Zbl 1243.62019

[41] Kojadinovic, I. and Yan, J. (2010). Modeling multivariate distributions with continuous margins using the copula r package. J. Stat. Softw., 34(9):1–20.

[42] Lambert, P. (2007). Archimedean copula estimation using Bayesian splines smoothing techniques. Comput. Statist. Data Anal., 51(12):6307 – 6320. [Crossref] | Zbl 05560110

[43] Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83(1):169–187. [Crossref] | Zbl 0865.62040

[44] McNeil, A. and Nešlehová, J. (2009). Multivariate Archimedean copulas, d-monotone functions and l1−norm symmetric distributions. Ann. Statist., 37(5B):3059–3097. [Crossref] | Zbl 1173.62044

[45] Michiels, F. and De Schepper, A. (2012). How to improve the fit of Archimedean copulas by means of transforms. Statist. Papers, 53(2):345–355. [Crossref] | Zbl 06084557

[46] Morillas, P. M. (2005). A method to obtain new copulas from a given one. Metrika, 61(2):169–184. [Crossref] | Zbl 1079.62056

[47] Nelsen, R. B. (1999). An introduction to copulas, volume 139 of Lecture Notes in Statistics. Springer-Verlag, New York. | Zbl 0909.62052

[48] Nelsen, R. B. and Fredricks, G. A. (1997). Diagonal copulas. In Beneš, V. and Štepán, J., editors, Distributions with given Marginals and Moment Problems, pages 121–128. Springer Netherlands. | Zbl 0906.60021

[49] Nelsen, R. B., Quesada-Molina, J., Rodriguez-Lallena, J., and Úbeda-Flores, M. (2009). Kendall distribution functions and associative copulas. Fuzzy Sets and Systems, 160(1):52–57. | Zbl 1183.60006

[50] Nelsen, R. B., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., and Úbeda-Flores, M. (2008). On the construction of copulas and quasi-copulas with given diagonal sections. Insurance Math. Econom., 42(2):473–483. | Zbl 1152.60311

[51] Omelka, M., Gijbels, I., and Veraverbeke, N. (2009). Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann. Statist., 37(5B):3023–3058. [Crossref] | Zbl 05596928

[52] Qu, L. and Yin, W. (2012). Copula density estimation by total variation penalized likelihood with linear equality constraints. Comput. Statist. Data Anal., 56(2):384 – 398. [Crossref] | Zbl 1239.62038

[53] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist., 4:912–923. [Crossref] | Zbl 0359.62040

[54] Segers, J. (2011). Diagonal sections of bivariate Archimedean copulas. Discussion of “Inference in multivariate Archimedean copula models” by Christian Genest, Johanna Nešlehová, and Johanna Ziegel. TEST, 20:281–283. [Crossref] | Zbl 06106918

[55] Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli, 18(3):764–782. [Crossref] | Zbl 1243.62066

[56] Valdez, E. and Xiao, Y. (2011). On the distortion of a copula and its margins. Scand. Actuar. J., 4:292–317. [Crossref] | Zbl 1277.62140

[57] Wysocki, W. (2012). Constructing Archimedean copulas from diagonal sections. Statist. Probab. Lett., 82(4):818 – 826.[Crossref] | Zbl 1242.62041