The truncated matrix trigonometric moment problem with an open gap
Sergey Zagorodnyuk
Concrete Operators, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

This paper is a continuation of our previous investigations on the truncated matrix trigonometric moment problem in Ukrainian Math. J., 2011, 63, no. 6, 786-797, and Ukrainian Math. J., 2013, 64, no. 8, 1199- 1214. In this paper we shall study the truncated matrix trigonometric moment problem with an additional constraint posed on the matrix measure MT(δ), δ ∈ B(T), generated by the seeked function M(x): MT(∆) = 0, where ∆ is a given open subset of T (called a gap). We present necessary and sufficient conditions for the solvability of the moment problem with a gap. All solutions of the moment problem with a gap can be constructed by a Nevanlinna-type formula.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268869
@article{bwmeta1.element.doi-10_2478_conop-2014-0003,
     author = {Sergey Zagorodnyuk},
     title = {The truncated matrix trigonometric moment problem with an open gap},
     journal = {Concrete Operators},
     volume = {2},
     year = {2015},
     zbl = {06477133},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_conop-2014-0003}
}
Sergey Zagorodnyuk. The truncated matrix trigonometric moment problem with an open gap. Concrete Operators, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_conop-2014-0003/

[1] Ando T., Truncated moment problems for operators, Acta Sci. Math. (Szeged), 1970, 31, no. 4, 319-334 | Zbl 0202.13403

[2] Berezanskii Ju.M., Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968 (Russian edition: Naukova Dumka, Kiev, 1965) | Zbl 0142.37203

[3] Chen G.-N., Hu Y.-J., On the multiple Nevanlinna-Pick matrix interpolation in the class 'p and the Carathéodory matrix coefficient problem, Linear Algebra Appl., 1998, 283, 179-203 | Zbl 0948.47018

[4] Chumakin M.E., Solutions of the truncated trigonometric moment problem, Uchen. zapiski Ulyanovskogo pedag. instituta, 1966, 20, issue 4, 311-355, (in Russian)

[5] Fritzsche B., Kirstein B., Thematricial Carathéodory problem in both nondegenerate and degenerate cases, Oper. Theory Adv. Appl., 2006, 165, 251-290 | Zbl 1117.44002

[6] Ilmushkin G.M., Turitsyn A.B., A truncated operator trigonometric moment problem, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7, 17-21, (in Russian) | Zbl 0511.42018

[7] Inin O.T., A truncated matrix trigonometric moment problem, Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 5 (84), 49-57 (in Russian)

[8] Krein M.G., Nudelman A.A., The Markov moment problem and extremal problems. Ideas and problems of P. L. Cebysev and A. A. Markov and their further development, Translations of Mathematical Monographs. Vol. 50. Providence, R.I., American Mathematical Society (AMS), 1977

[9] Zagorodnyuk S.M., The truncated matrix trigonometric moment problem: the operator approach, Ukrainian Math. J., 2011, 63, no. 6, 786-797 [WoS]

[10] Zagorodnyuk S.M., Nevanlinna formula for the truncated matrix trigonometric moment problem, Ukrainian Math. J., 2013, 64, no. 8, 1199-1214 [11] Zagorodnyuk S.M., Generalized resolvents of symmetric and isometric operators: the Shtraus approach, Ann. Funct. Anal., 2013, http://www.emis.de/journals/AFA/ | Zbl 1273.42002