A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators
A. Perälä ; J. A. Virtanen ; L. Wolf
Concrete Operators, Tome 1 (2013), p. 28-36 / Harvested from The Polish Digital Mathematics Library

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267452
@article{bwmeta1.element.doi-10_2478_conop-2012-0004,
     author = {A. Per\"al\"a and J. A. Virtanen and L. Wolf},
     title = {A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators},
     journal = {Concrete Operators},
     volume = {1},
     year = {2013},
     pages = {28-36},
     zbl = {1273.35206},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_conop-2012-0004}
}
A. Perälä; J. A. Virtanen; L. Wolf. A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators. Concrete Operators, Tome 1 (2013) pp. 28-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_conop-2012-0004/

[1] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators. Second edition, Springer-Verlag, Berlin, 2006. | Zbl 1098.47002

[2] J. B. Garnett, Bounded analytic functions. Revised first edition. Graduate Texts in Mathematics, 236. Springer, New York, 2007.

[3] L. A. Coburn, Weyl’s theorem for nonnormal operators. Michigan Math. J. 13 1966 285–288.

[4] I. C. Gohberg, On the number of solutions of a homogeneous singular integral equation with continuous coefficients. (Russian) Dokl. Akad. Nauk SSSR 122 1958 327–330.

[5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations, Birkhäuser Verlag, Basel, 1992. | Zbl 0781.47038

[6] P. Koosis, Introduction to Hp spaces. Second edition. With two appendices by V. P. Havin [Viktor Petrovich Khavin]. Cambridge Tracts in Mathematics, 115. Cambridge University Press, Cambridge, 1998. | Zbl 1024.30001

[7] S. G. Mihlin, Singular integral equations. (Russian) Uspehi Matem. Nauk (N.S.) 3, (1948). no. 3(25), 29–112.

[8] N. I. Muskhelishvili, Singular integral equations. Second edition. Dover Publications, New York, 1992. | Zbl 0108.29203

[9] M. Papadimitrakis and J. A. Virtanen, Hankel and Toeplitz transforms on H1: continuity, compactness and Fredholm properties. Integral Equations Operator Theory 61 (2008), no. 4, 573–591. | Zbl 1201.47032

[10] I. B. Simonenko, Riemann’s boundary value problem with a continuous coefficient. (Russian) Dokl. Akad. Nauk SSSR 124 1959 278–281.

[11] I. B. Simonenko, Some general questions in the theory of the Riemann boundary problem. Math. USSR Izvestiya 2 (1968), 1091–1099. | Zbl 0186.13601

[12] E. Shargorodsky, J. F. Toland, A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 1, 37–52. | Zbl 1045.35113

[13] E. Shargorodsky, J. F. Toland, Bernoulli free-boundary problems. Mem. Amer. Math. Soc. 196 (2008), no. 914, viii+70 pp. | Zbl 1167.35001

[14] E. Shargorodsky, J. A. Virtanen, Uniqueness results for the Riemann-Hilbert problem with a vanishing coefficient. Integral Equations Operator Theory 56 (2006), no. 1, 115-127. | Zbl 1106.35046

[15] J. A. Virtanen, A remark on the Riemann-Hilbert problem with a vanishing coefficient. Math. Nachr. 266 (2004), 85–91. | Zbl 1055.30034

[16] J. A. Virtanen, Fredholm theory of Toeplitz operators on the Hardy space H1. Bull. London Math. Soc. 38 (2006), no. 1, 143–155. | Zbl 1092.47032

[17] D. Vukotic, A note on the range of Toeplitz operators. (English summary) Integral Equations Operator Theory 50 (2004), no. 4, 565–567. | Zbl 1062.47034