On extended eigenvalues and extended eigenvectors of truncated shift
Hasan Alkanjo
Concrete Operators, Tome 1 (2013), p. 19-27 / Harvested from The Polish Digital Mathematics Library

In this paper we consider the truncated shift operator Su on the model space K2u := H2 θ uH2. We say that a complex number λ is an extended eigenvalue of Su if there exists a nonzero operator X, called extended eigenvector associated to λ, and satisfying the equation SuX = λXSu. We give a complete description of the set of extended eigenvectors of Su, in the case of u is a Blaschke product..

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:266777
@article{bwmeta1.element.doi-10_2478_conop-2012-0003,
     author = {Hasan Alkanjo},
     title = {On extended eigenvalues and extended eigenvectors of truncated shift},
     journal = {Concrete Operators},
     volume = {1},
     year = {2013},
     pages = {19-27},
     zbl = {1290.47028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_conop-2012-0003}
}
Hasan Alkanjo. On extended eigenvalues and extended eigenvectors of truncated shift. Concrete Operators, Tome 1 (2013) pp. 19-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_conop-2012-0003/

[1] H. Bercovici. Operator theory and arithmetic in H1, volume 26 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.

[2] A. Biswas and S. Petrovic. On extended eigenvalues of operators. Integral Equations Operator Theory, 55(2):233–248, 2006. | Zbl 1119.47019

[3] N. K. Nikol0ski˘ı. Treatise on the shift operator, volume 273 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1986. Spectral function theory, With an appendix by S. V. Hrušcev [S. V. Khrushchëv] and V. V. Peller, Translated from the Russian by Jaak Peetre.

[4] M. Rosenblum. On the operator equation BX − XA = Q. Duke Math. J., 23:263–269, 1956.

[5] D. Sarason. Free interpolation in the Nevanlinna class. In Linear and complex analysis, volume 226 of Amer. Math. Soc. Transl. Ser. 2, pages 145–152. Amer. Math. Soc., Providence, RI, 2009. | Zbl 1183.30031

[6] B. Sz.-Nagy and C. Foias. Harmonic analysis of operators on Hilbert space. Translated from the French and revised. North-Holland Publishing Co., Amsterdam, 1970. | Zbl 0201.45003