An overview of some recent developments on the Invariant Subspace Problem
Isabelle Chalendar ; Jonathan R. Partington
Concrete Operators, Tome 1 (2013), p. 1-10 / Harvested from The Polish Digital Mathematics Library

This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:266557
@article{bwmeta1.element.doi-10_2478_conop-2012-0001,
     author = {Isabelle Chalendar and Jonathan R. Partington},
     title = {An overview of some recent developments on the Invariant Subspace Problem},
     journal = {Concrete Operators},
     volume = {1},
     year = {2013},
     pages = {1-10},
     zbl = {1278.47017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_conop-2012-0001}
}
Isabelle Chalendar; Jonathan R. Partington. An overview of some recent developments on the Invariant Subspace Problem. Concrete Operators, Tome 1 (2013) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_conop-2012-0001/

Ambrozie C., Müller V., Invariant subspaces for polynomially bounded operators. J. Funct. Anal., 2004, 213, 321–345 | Zbl 1056.47006

Androulakis G., Dodos P., Sirotkin G., Troitsky V.G., Classes of strictly singular operators and their products, Israel J. Math., (to appear) | Zbl 1168.47018

Anisca R., Troitsky V.G., Minimal vectors of positive operators, Indiana Univ. Math. J., 2005, 54, 861–872[Crossref] | Zbl 1080.47010

Ansari S., Enflo P., Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc., 1998, 350, 539–558 | Zbl 0888.47002

Argyros S.A., Haydon R.G., A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta Math., 2011, 206, 1–54 | Zbl 1223.46007

Aronszajn N., Smith K.T., Invariant subspaces of completely continuous operators, Ann. of Math. (2), 1954, 60, 345–350[Crossref] | Zbl 0056.11302

Atzmon A., An operator without invariant subspace on a nuclear Fréchet space, Ann. of Math. (2), 1983, 117, 669–694 | Zbl 0553.47002

Beauzamy B., Un opérateur sans sous-espace invariant: simplification de l’exemple de P. Enflo, Integral Equations Operator Theory, 1985, 8, 314–384 | Zbl 0571.47002

Bercovici H., Foias C., Pearcy C., Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional conference series in mathematics, 56. A.M.S., Providence, 1985 | Zbl 0569.47007

Bercovici H., Foias C., Pearcy C., Two Banach space methods and dual operator algebras, J. Funct. Anal., 1988, 78, 306–345 [Crossref] | Zbl 0661.46004

Bernstein A.R., Robinson A., Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math., 1966, 16, 421–431 | Zbl 0141.12903

Blecher D.P., Davie A.M., Invariant subspaces for an operator on L2 (Π) composed of a multiplication and a translation, J. Operator Theory, 1990, 23, 115–123 | Zbl 0743.47003

Brown S.W., Some invariant subspaces for subnormal operators, Integral Equations Operator Theory, 1978, 1, 310–333 | Zbl 0416.47009

Brown S.W., Chevreau B., Pearcy C., On the structure of contraction operators II, J. Funct. Anal., 1988, 76, 30–55 [Crossref] | Zbl 0641.47013

Caradus S.R., Universal operators and invariant subspaces, Proc. Amer. Math. Soc., 1969, 23, 526–527 [Crossref] | Zbl 0186.19204

Casazza P., Lohman R., A general construction of spaces of the type of R. C. James, Canad. J. Math., 1975, 27, 1263–1270 | Zbl 0314.46017

Chalendar I., Fricain E., Popov A.I., Timotin D., Troitsky V.G., Finitely strictly singular operators between James spaces, J. Funct. Anal., 2009, 256, 1258–1268 | Zbl 1156.47027

Chalendar I., Partington J.R., Convergence properties of minimal vectors for normal operators and weighted shifts, Proc. Amer. Math. Soc., 2005, 133, 501–510 | Zbl 1066.41016

Chalendar I., Partington J.R., Variations on Lomonosov’s theorem via the technique of minimal vectors, Acta Sci. Math. (Szeged), 2005, 71, 603–617 | Zbl 1102.41020

Chalendar I., Partington J.R., Invariant subspaces for products of Bishop operators, Acta Sci. Math. (Szeged), 2008, 74, 719–727 | Zbl 1199.47035

Chalendar I., Partington J.R., Modern approaches to the invariant-subspace problem, Cambridge Tracts in Mathematics, 188, Cambridge University Press, Cambridge, 2011 | Zbl 1231.47005

Cima J.A., Thomson J., Wogen W., On some properties of composition operators, Indiana Univ. Math. J., 1974/75, 24, 215–220 | Zbl 0276.47038

Davie A.M., Invariant subspaces for Bishop’s operators, Bull. London Math. Soc., 1974, 6, 343–348 [Crossref] | Zbl 0287.47003

Delpech S., A short proof of Pitt’s compactness theorem, Proc. Amer. Math. Soc., 2009, 137, 1371–1372 | Zbl 1171.46013

Enflo P., On the invariant subspace problem in Banach spaces, Séminaire Maurey–Schwartz (1975–1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14–15, 7 pp., Centre Math., École Polytech., Palaiseau, 1976 | Zbl 0341.46016

Enflo P., On the invariant subspace problem for Banach spaces, Acta Math., 1987, 158, 213–313 | Zbl 0663.47003

Enflo P., Extremal vectors for a class of linear operators, Functional analysis and economic theory (Samos, 1996), 61–64, Springer, Berlin, 1998 | Zbl 0922.47001

Enflo P., Hõim T., Some results on extremal vectors and invariant subspaces, Proc. Amer. Math. Soc., 2003, 131, 379–387 | Zbl 1043.47007

Fabian M., Halala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite geometry, CMS Books in Mathematics, Springer-Verlag, New-York, 2001 | Zbl 0981.46001

Flattot A., Hyperinvariant subspaces for Bishop-type operators, Acta Sci. Math. (Szeged), 2008, 74, 689–718 | Zbl 1210.47020

Fulton W., Algebraic topology, Springer–Verlag, New York, 1995 | Zbl 0852.55001

Gallardo-Gutiérrez E.A., Gorkin P., Minimal invariant subspaces for composition operators, J. Math. Pures Appl. (9), 2011, 95, 245–259 [Crossref] | Zbl 1213.47007

Gowers W.T., Maurey B., Banach spaces with small spaces of operators, Math. Ann., 1997, 307, 543–568 | Zbl 0876.46006

Grünbaum B., Convex polytopes, 2nd edition, Graduate Texts in Mathematics, 221, Springer–Verlag, New York, 2003 | Zbl 1033.52001

James R.C., A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A., 1951, 37, 174–177 | Zbl 0042.36102

Kim H.J., Hyperinvariant subspaces for operators having a normal part, Oper. Matrices, 2011, 5, 487–494 | Zbl 1238.47005

Kumar R., Partington J.R., Weighted composition operators on Hardy and Bergman spaces, Recent advances in operator theory, operator algebras, and their applications, 157–167, Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005 | Zbl 1081.47030

Lindenstrauss J., Tzafriri L., Classical Banach spaces. I, Springer-Verlag, Berlin, 1977 | Zbl 0362.46013

Littlewood J.E., On inequalities in the theory of functions, Proc. London Math. Soc. (2), 1925, 23, 481–519 | Zbl 51.0247.03

Lomonosov V.I., Invariant subspaces for operators commuting with compact operators, Funct. Anal. Appl., 1973, 7, 213–214 | Zbl 0293.47003

MacDonald G.W., Invariant subspaces for Bishop-type operators, J. Funct. Anal., 1990, 91, 287–311 | Zbl 0727.47002

Maslyuchenko V., Plichko A., Quasireflexive locally convex spaces without Banach subspaces, Teor. Funktsiˇı Funktsional. Anal. i Prilozhen., 1985, 44, 78–84 (in Russian), translation in J. Soviet Math., 1990, 48, 307–312 | Zbl 0582.46005

Matache V., On the minimal invariant subspaces of the hyperbolic composition operator, Proc. Amer. Math. Soc., 1993, 119, 837–841 | Zbl 0799.47015

Milman V.D., Operators of class C0 and C0*, Teor. Funktsiˇı Funkcional. Anal. i Priložen., 1970, 10, 15–26

Mortini R., Cyclic subspaces and eigenvectors of the hyperbolic composition operator, Travaux mathématiques, Fasc. VII, 69–79, Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1995 | Zbl 0841.46015

Nordgren E., Rosenthal P., Wintrobe F.S., Invertible composition operators on Hp, J. Funct. Anal., 1987, 73, 324–344 | Zbl 0643.47034

Partington J.R., Pozzi E., Universal shifts and composition operators, Oper. Matrices, 2011, 5, 455–467 | Zbl 1244.47007

Pisier G., A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc., 1997, 10, 351–369 [Crossref] | Zbl 0869.47014

Plichko A., Superstrictly singular and superstrictly cosingular operators, Functional analysis and its applications, 2004, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 239–255 | Zbl 1124.46006

Popov A.I., Schreier singular operators, Houston J. Math., 2009, 35, 209–222 | Zbl 1222.46013

Pozzi E., Universality of weighted composition operators on L2([0, 1]) and Sobolev spaces, Acta Sci. Math. (Szeged), (to appear) | Zbl 1289.47015

Read C., A solution to the invariant subspace problem, Bull. London Math. Soc., 1984, 16, 337–401 [Crossref] | Zbl 0566.47003

Read C., A solution to the invariant subspace problem on the space l1, Bull. London Math. Soc., 1985, 17, 305–317 [Crossref] | Zbl 0574.47006

Read C., A short proof concerning the invariant subspace problem, J. London Math. Soc. (2), 1986, 34, 335–348 | Zbl 0664.47006

Read C., Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2), 1997, 56, 595–606 [Crossref] | Zbl 0892.47005

Read C., Strictly singular operators and the invariant subspace problem, Studia Math., 1999, 132, 203–226 | Zbl 0929.47004

Singer I., Bases in Banach Spaces I, Springer-Verlag, New York–Berlin, 1970 | Zbl 0198.16601

Sari B., Schlumprecht Th., Tomczak-Jaegermann N., Troitsky V.G., On norm closed ideals in L(lp⊗ lq), Studia Math., 2007, 179, 239–262 | Zbl 1116.47058

Thomson J.E., Invariant subspaces for algebras of subnormal operators, Proc. Amer. Math. Soc., 1986, 96, 462–464 [Crossref] | Zbl 0593.47025

Troitsky V.G., Lomonosov’s theorem cannot be extended to chains of four operators, Proc. Amer. Math. Soc., 2000, 128, 521–525 | Zbl 0940.47004

Troitsky V.G., Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc., 2004, 132, 1177–1180 | Zbl 1060.47011

Ziegler G.M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1994 | Zbl 0823.52002