An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study
Ewa Skotarczak ; Ewa Bakinowska ; Kamila Tomaszyk
Biometrical Letters, Tome 51 (2014), p. 171-179 / Harvested from The Polish Digital Mathematics Library

A nonlinear statistical approach was used to evaluate the efficiency of plant protection products. The methodology presented can be implemented when the observations in an experiment are recorded as success or failure. This occurs, for example, when following the application of a herbicide or pesticide, a single weed or insect is classified as alive (failure) or dead (success). Then a higher probability of success means a higher efficiency of the tested product. Using simulated data sets, a comparison was made of three methods based on the logit, probit and threshold models, with special attention to the effect of sample size and number of replications on the accuracy of the estimation of probabilities.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268766
@article{bwmeta1.element.doi-10_2478_bile-2014-0012,
     author = {Ewa Skotarczak and Ewa Bakinowska and Kamila Tomaszyk},
     title = {An evaluation of the efficiency of plant protection products via nonlinear statistical methods -- a simulation study},
     journal = {Biometrical Letters},
     volume = {51},
     year = {2014},
     pages = {171-179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0012}
}
Ewa Skotarczak; Ewa Bakinowska; Kamila Tomaszyk. An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study. Biometrical Letters, Tome 51 (2014) pp. 171-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0012/

Bakinowska E., Kala R. (2007): An application of logistic models for comparison of varieties of seed pea with respect to lodging. Biometrical Letters 44(2): 143-154.

Bakinowska E., Pilarczyk W., Osiecka A., Wiatr K. (2012): Analysis of downy mildew infection of field pea varieties using the logistic model. Journal of Plant Protection Research 52(2): 264-270.

Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., Ritz C. (2013): Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science 61(1): 4-20.[Crossref]

Falconer D.S. (1960): Introduction to quantitative genetics. Ronald Press Co, New York.

Finney D.J. (1979): Bioassay and the practice of statistical inference. International Statistical Review 47(1): 1-12.[Crossref] | Zbl 0397.92002

Moliński K., Szydłowski M., Szwaczkowski T., Dobek A., Skotarczak E. (2003): An algorithm for genetic variance estimation of reproductive traits under a threshold model. Archives of Animal Breeding 46(1): 85-91.

McCullagh P., Nelder J.A. (1989): Generalized linear models. 2nd. ed., Chapman and Hall, London. | Zbl 0744.62098

Rao C.R., Toutenburg H. (1999): Linear Models. 2nd ed. Springer-Verlag, New York. | Zbl 0846.62049

Ritz C., Pipper C.B., Strebig J.C. (2013): Analysis of germination data from agricultural experiments, European Journal of Agronomy 45: 1-6.[WoS][Crossref]

SAS Institute (1997): SAS/STAT software: Changes and enhancements through release 6.12. SAS Inst., Cary, NC, USA.

Sørensen D.A., Andersen S, Gianola D., Kørsgaard I. (1995): Bayesian inference in threshold models using Gibbs sampling. Genetics Selection Evolution 27: 229-249.[WoS][Crossref]

Sørensen D.A, Gianola D. (2002): Likelihood, Bayesian and MCMC methods in quantitative genetics. Springer-Verlag, New York. | Zbl 1013.62105

Skotarczak E., Molińska A., Moliński K. (2002): Zastosowanie modelu progowego do oceny skuteczności działania wybranych herbicydów. Colloquium Biometryczne 32: 125-132.