Kernel principal components (KPC) and kernel discriminant coordinates (KDC), which are the extensions of principal components and discriminant coordinates, respectively, from a linear domain to a nonlinear domain via the kernel trick, are two very popular nonlinear feature extraction methods. The kernel discriminant coordinates space has proven to be a very powerful space for pattern recognition. However, further study shows that there are still drawbacks in this method. To improve the performance of pattern recognition, we propose a new learning algorithm combining the advantages of KPC and KDC
@article{bwmeta1.element.doi-10_2478_bile-2014-0005, author = {Karol Der\k egowski and Miros\l aw Krzy\'sko}, title = {A kernel-based learning algorithm combining kernel discriminant coordinates and kernel principal components}, journal = {Biometrical Letters}, volume = {51}, year = {2014}, pages = {57-73}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0005} }
Karol Deręgowski; Mirosław Krzyśko. A kernel-based learning algorithm combining kernel discriminant coordinates and kernel principal components. Biometrical Letters, Tome 51 (2014) pp. 57-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0005/
Aronszajn N. (1950): Theory of reproducing kernels. Transactions of the American Mathematical Society 68: 337-404. | Zbl 0037.20701
Badat G., Anouar F. (2000): Generalized discriminant analysis using a kernel approach. Neural Computation 12: 2385-2404.
Bache K., Lichman M. (2013): UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
Fisher R.A. (1936): The use of multiple measurements in taxonomic problem. Annals of Eugenics 7: 179-188.
Friedman J.H. (1989): Regularized discriminant analysis. Journal of the American Statistical Association 84: 165-175.
Hotelling H. (1933): Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417-441, 498-520. | Zbl 59.1182.04
Mika S., Rätsch G., Weston J., Schölkopf B., Müller K.R. (1999): Fisher discriminant analysis with kernels. In Y.H. Hu, J. Larsen, E. Wilson, and S. Douglas (eds.), Neural Networks for Signal Processing IV: 41-48.
Schölkopf B., Smola A., Müller K.B. (1998): Nonlinear component analysis as a kernel eigenvalues problem. Neural Computation 10: 1299-1319.[WoS]
Seber G.A.F. (1984): Multivariate Observations. Wiley, New York.
Shawe-Taylor J., Cristianini N. (2004): Kernel methods for pattern analysis. Cambridge University Press, Cambridge, UK. | Zbl 0994.68074