A kernel-based learning algorithm combining kernel discriminant coordinates and kernel principal components
Karol Deręgowski ; Mirosław Krzyśko
Biometrical Letters, Tome 51 (2014), p. 57-73 / Harvested from The Polish Digital Mathematics Library

Kernel principal components (KPC) and kernel discriminant coordinates (KDC), which are the extensions of principal components and discriminant coordinates, respectively, from a linear domain to a nonlinear domain via the kernel trick, are two very popular nonlinear feature extraction methods. The kernel discriminant coordinates space has proven to be a very powerful space for pattern recognition. However, further study shows that there are still drawbacks in this method. To improve the performance of pattern recognition, we propose a new learning algorithm combining the advantages of KPC and KDC

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268832
@article{bwmeta1.element.doi-10_2478_bile-2014-0005,
     author = {Karol Der\k egowski and Miros\l aw Krzy\'sko},
     title = {A kernel-based learning algorithm combining kernel discriminant coordinates and kernel principal components},
     journal = {Biometrical Letters},
     volume = {51},
     year = {2014},
     pages = {57-73},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0005}
}
Karol Deręgowski; Mirosław Krzyśko. A kernel-based learning algorithm combining kernel discriminant coordinates and kernel principal components. Biometrical Letters, Tome 51 (2014) pp. 57-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0005/

Aronszajn N. (1950): Theory of reproducing kernels. Transactions of the American Mathematical Society 68: 337-404. | Zbl 0037.20701

Badat G., Anouar F. (2000): Generalized discriminant analysis using a kernel approach. Neural Computation 12: 2385-2404.

Bache K., Lichman M. (2013): UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Fisher R.A. (1936): The use of multiple measurements in taxonomic problem. Annals of Eugenics 7: 179-188.

Friedman J.H. (1989): Regularized discriminant analysis. Journal of the American Statistical Association 84: 165-175.

Hotelling H. (1933): Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417-441, 498-520. | Zbl 59.1182.04

Mika S., Rätsch G., Weston J., Schölkopf B., Müller K.R. (1999): Fisher discriminant analysis with kernels. In Y.H. Hu, J. Larsen, E. Wilson, and S. Douglas (eds.), Neural Networks for Signal Processing IV: 41-48.

Schölkopf B., Smola A., Müller K.B. (1998): Nonlinear component analysis as a kernel eigenvalues problem. Neural Computation 10: 1299-1319.[WoS]

Seber G.A.F. (1984): Multivariate Observations. Wiley, New York.

Shawe-Taylor J., Cristianini N. (2004): Kernel methods for pattern analysis. Cambridge University Press, Cambridge, UK. | Zbl 0994.68074