In this paper, we study the relationships between regular A-optimal spring balance weighing designs and regular A-optimal chemical balance weighing designs. We give the basic relation between these designs in the case where the errors are uncorrelated and they have different variances. We give some examples of methods of construction of such designs.
@article{bwmeta1.element.doi-10_2478_bile-2013-0023, author = {Bronis\l aw Ceranka and Ma\l gorzata Graczyk}, title = {Relations between regular A-optimal chemical and spring balance weighing designs with diagonal covariance matrix of errors}, journal = {Biometrical Letters}, volume = {50}, year = {2013}, pages = {127-136}, zbl = {06301867}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_bile-2013-0023} }
Bronisław Ceranka; Małgorzata Graczyk. Relations between regular A-optimal chemical and spring balance weighing designs with diagonal covariance matrix of errors. Biometrical Letters, Tome 50 (2013) pp. 127-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_bile-2013-0023/
Abrego B., Fernandez-Merchant S., Neubauer G.N., Watkins W. (2003): D-optimal weighing designs for n = -1mod4 objects and a large number of weighings. Linear Algebra and its Applications 374: 175-218.[WoS] | Zbl 1025.62025
Banerjee K.S. (1975): Weighing Designs for Chemistry, Medicine. Economics, Operations Research, Statistics. Marcel Dekker Inc., New York. | Zbl 0334.62030
Ceranka B., Graczyk M. (2004): A-optimal chemical balance weighing design. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Mathematica 15: 41-54.
Ceranka B., Graczyk M., Katulska K. (2006): A-optimal chemical balance weighing design with nonhomogeneity of variances of errors. Statistics and Probability Letters 76: 653 - 665 | Zbl 1090.62074
Ceranka B., Graczyk M., Katulska K. (2007): On certain A-optimal chemical balance weighing designs. Computational Statistics and Data Analysis 51: 5821-5827.[WoS] | Zbl 05560074
Ceranka B., Katulska K. (2001): A-optimal chemical balance weighing design with diagonal covariance matrix of errors. Moda 6, Advances in Model Oriented Design and Analysis, A.C. Atkinson, P. Hackl, W.G. Mffller, eds., Physica-Verlag, Heidelberg, New York, 29-36. Chadjiconstantinidis S., Chadjipadelis T. (1994): A construction method of new D-A-optimal designs when N = 3mod4 and к < N-1. Discrete Mathematics 131: 39-50.
Graczyk M. (2011): A-optimal biased spring balance design. Kybernetika 47, 893-901. | Zbl 1274.62495
Graczyk M. (2012a): Notes about A-optimal spring balance weighing design. Journal of Statistical Planning and Inference 142: 781-784. | Zbl 1232.62108
Graczyk M. (2012b): Regular A-optimal spring balance weighing designs. Revstat 10: 323-333. | Zbl 1297.62173
Jacroux M., Notz W. (1983): On the optimality of spring balance weighing designs. The Annals of Statistics 11: 970-978. | Zbl 0529.62064
Kageyama S., Saha G.M. (1983): Note on the construction of optimum chemical balance weighing designs. Ann. Inst. Statist. Mat. 35A: 447-452. | Zbl 0553.62066
Neubauer G.N., Pace R.G. (2010): D-optimal (0,1)-weighing designs for eight objects. Linear Algebra and its Applications 432: 2634-2657.[WoS] | Zbl 1185.62134
Masaro J., Wong C.S. (2008): Robustness of A-optimal designs. Linear Algebra and its Applications 429: 1392-1408.[WoS] | Zbl 1145.62053
Pukelsheim F. (1993): Optimal Design of Experiment. John Wiley and Sons, New York. | Zbl 0834.62068
Raghavarao D. (1971): Constructions and Combinatorial Problems in Designs of Experiments. John Wiley Inc., New York. | Zbl 0222.62036
Shah K.R., Sinha B.K. (1989): Theory of Optimal Designs. Springer-Verlag, Berlin. | Zbl 0688.62043