In this paper, we illustrate an application of Ascendant Hierarchical Cluster Analysis (AHCA) to complex data taken from the literature (interval data), based on the standardized weighted generalized affinity coefficient, by the method of Wald and Wolfowitz. The probabilistic aggregation criteria used belong to a parametric family of methods under the probabilistic approach of AHCA, named VL methodology. Finally, we compare the results achieved using our approach with those obtained by other authors.
@article{bwmeta1.element.doi-10_2478_bile-2013-0015, author = {\'Aurea Sousa and Helena Bacelar-Nicolau and Fernando C. Nicolau and Osvaldo Silva}, title = {Clustering of Symbolic Data based on Affinity Coefficient: Application to a Real Data Set}, journal = {Biometrical Letters}, volume = {50}, year = {2013}, pages = {27-38}, zbl = {1286.62060}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_bile-2013-0015} }
Áurea Sousa; Helena Bacelar-Nicolau; Fernando C. Nicolau; Osvaldo Silva. Clustering of Symbolic Data based on Affinity Coefficient: Application to a Real Data Set. Biometrical Letters, Tome 50 (2013) pp. 27-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_bile-2013-0015/
Bacelar-Nicolau H. (1980): Contributions to the Study of Comparison Coefficients in Cluster Analysis, PhD Th. (in Portuguese), Univ. Lisbon.
Bacelar-Nicolau H. (1987): On the Distribution Equivalence in Cluster Analysis, Proc. of the NATO ASI on Pattern Recognition Theory and Applications, Springer- Verlag, New York, 1987: 73-79.
Bacelar-Nicolau H. (1988): Two Probabilistic Models for Classification of Variables in Frequency Tables. In: Classification and Related Methods of Data Analysis, H.-H. Bock (ed.), North Holland: Elsevier Sciences Publishers B.V.: 181-186. | Zbl 0729.62546
Bacelar-Nicolau H. (2000): The Affinity Coefficient. In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, H.-H. Bock and E. Diday (Eds.), Berlin: Springer-Verlag: 160-165. | Zbl 0977.62066
Bacelar-Nicolau H. (2002): On the Generalised Affinity Coefficient for Complex Data. Biocybernetics and Biomedical Engineering 22(1): 31-42.
Bacelar-Nicolau H., Nicolau F.C., Sousa A., Bacelar-Nicolau L. (2009): Measuring Similarity of Complex and Heterogeneous Data in Clustering of Large Data Sets, Biocybernetics and Biomedical Engineering 29(2): 9-18. | Zbl 1286.62060
Bacelar-Nicolau H., Nicolau F.C., Sousa A., Bacelar-Nicolau L. (2010): Clustering Complex Heterogeneous Data Using a Probabilistic Approach. Proceedings of Stochastic Modeling Techniques and Data Analysis International Conference (SMTDA2010), Chania Crete Greece, 8-11 June 2010 - published on the CD Proceedings of SMTDA2010 (electronic publication). | Zbl 1286.62060
Bock H.-H., Diday E. (2000): Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Series: Studies in Classification, Data Analysis, and Knowledge Organization, Berlin: Springer- Verlag. | Zbl 1039.62501
Chavent M., Lechevallier Y. (2002): Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: Classification, Clustering, and Data Analysis, K. Jajuga, A. Sokolowski, H.-H. Bock (Eds.), Berlin: Springer-Verlag: 53-60. | Zbl 1032.62058
Chavent M., De Carvalho F.A.T., Lechevallier Y., Verde R. (2003): Trois Nouvelles Méthodes de Classification Automatique de Données Symboliques de type intervalle, Revue de Statistique Appliquée, tome 51(4): 5-29.
De Carvalho F.A.T., Brito P., Bock H-H. (2006a): Dynamic Clustering for Interval Data Based on L2 Distance. Computational Statistics 21(2). | Zbl 1114.62070
De Carvalho F.A.T., Souza R.M.C.R. de, Chavent M., Lechevallier Y. (2006b): Adaptive Hausorff Distances and Dynamic Clustering of Symbolic Interval Data. Pattern Recognition Letters 27(3).[Crossref]
Esposito F., Malerba D., Tamma V. (2000): Dissimilarity Measures for Symbolic Objects, In: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, H.-H. Bock and E. Diday (Eds.), Berlin: Springer-Verlag: 165-185. | Zbl 0977.62005
Fraser D.A.S. (1975): Non Parametric Methods in Statistics. Chapman and Hall.
Lerman I.C. (1972): Étude Distributionelle de Statistiques de Proximité entre Structures Algébriques Finies du Même Type: Apllication à la Classification Automatique. Cahiers du B.U.R.O., 19, Paris.
Lerman I.C. (1981): Classification et Analyse Ordinale des Données, Paris: Dunod. | Zbl 0485.62051
Matusita K. (1951): On the theory of Statistical Decision Functions, Ann. Instit. Stat. Math. III: 1-30. | Zbl 0044.14901
Nicolau F.C. (1983): Cluster Analysis and Distribution Function. Methods of Operations Research 45: 431-433.
Nicolau F.C.m, Bacelar-Nicolau H. (1998): Some Trends in the Classification of Variables. In: Data Science, Classification, and Related Methods, C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock, Y. Baba (Eds.), Springer-Verlag: 89-98. | Zbl 0894.62075
Nicolau F.C. (1983): Cluster Analysis and Distribution Function. Methods of Operations Research 45: 431-433.
Souza R.M.C.R. de, De Carvalho F.A.T. (2004): Clustering of interval data Based on City-Block distances, Pattern Recognition Letters 25: 353-365.[Crossref]