We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions
@article{bwmeta1.element.doi-10_2478_aupcsm-2014-0008, author = {Kamil Kular}, title = {Semiprime rings with nilpotent Lie ring of inner derivations}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, volume = {13}, year = {2014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0008} }
Kamil Kular. Semiprime rings with nilpotent Lie ring of inner derivations. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 13 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0008/
[1] N. Argaç, H.G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009), no. 5, 997-1005. Cited on 104.[Crossref]
[2] M.J. Atteya, Commutativity results with derivations on semiprime rings, J. Math. Comput. Sci. 2 (2012), no. 4, 853-865. Cited on 104.
[3] M.N. Daif, H.E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. Cited on 104.[Crossref]
[4] I.N. Herstein, Noncommutative rings, Carus Mathematical Monographs, 15. Mathematical Association of America, Washington, DC, 1994. Cited on 104.
[5] M. Hongan, A note on semiprime rings with derivation, Internat. J. Math. Math. Sci. 20 (1997), no. 2, 413-415. Cited on 104.[Crossref]