A note on the convergence of partial Szász-Mirakyan type operators
Monika Herzog
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 13 (2014), / Harvested from The Polish Digital Mathematics Library

In this paper we study approximation properties of partial modified Szasz-Mirakyan operators for functions from exponential weight spaces. We present some direct theorems giving the degree of approximation for these operators. The considered version of Szász-Mirakyan operators is more useful from the computational point of view.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268902
@article{bwmeta1.element.doi-10_2478_aupcsm-2014-0004,
     author = {Monika Herzog},
     title = {A note on the convergence of partial Sz\'asz-Mirakyan type operators},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     volume = {13},
     year = {2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0004}
}
Monika Herzog. A note on the convergence of partial Szász-Mirakyan type operators. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 13 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0004/

[1] M. Herzog, Approximation theorems for modified Szász-Mirakyan operators in polynomial weight spaces, Matematiche (Catania) 54 (1999), no. 1, 77-90. Cited on 45.

[2] M. Herzog, Approximation of functions from exponential weight spaces by operators of Szász-Mirakyan type, Comment. Math. Prace Mat. 43 (2003), no. 1, 77-94. Cited on 47.

[3] M. Herzog, Approximation of functions of two variables from exponential weight spaces, Technical Transactions. Fundamental Sciences, 1-NP (2012), 3-10. Cited on 47.

[4] R.N. Mohapatra, Z. Walczak, Remarks on a class of Szász-Mirakyan type operators, East J. Approx. 15 (2009), no. 2, 197-206. Cited on 46 and 49.

[5] Z. Walczak, V. Gupta, A note on the convergence of Baskakov type operators, Appl. Math. Comput. 202 (2008), no. 1, 370-375. Cited on 46.[WoS]

[6] Z. Walczak, Approximation theorems for a general class of truncated operators, Appl. Math. Comput. 217 (2010), no. 5, 2142-2148. Cited on 46. [WoS]