It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.
@article{bwmeta1.element.doi-10_2478_aupcsm-2014-0002, author = {Kamila Kli\'s-Garlicka}, title = {Perturbation of Toeplitz operators and reflexivity}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, volume = {13}, year = {2014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0002} }
Kamila Kliś-Garlicka. Perturbation of Toeplitz operators and reflexivity. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 13 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0002/
[1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. Cited on 17.[Crossref]
[2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics 55, Amer. Math. Soc., Providence (1984). Cited on 16.
[3] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411-428. Cited on 16.[Crossref]
[4] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265-273. Cited on 17.
[5] P.R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1967. Cited on 16.
[6] K. Klis-Garlicka, Rank-one perturbation of Toeplitz operators and reflexivity, Opuscula Math. 32 (2012), 505-509. Cited on 15 and 16.
[7] K. Klis, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299-313. Cited on 16 and 17.
[8] J. Kraus, D. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory, 13 (1985), 227-236. Cited on 16.
[9] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356. Cited on 15 and 16.
[10] W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra Appl. 27 (1979), 27-29. Cited on 15.[Crossref]
[11] H. Mustafayev, On hyper-reflexivity of some operator spaces, Internat. J. Math. Math. Sci., 19 (1996), 603-606. Cited on 17.[Crossref]