Simple proofs of some generalizations of the Wilson’s theorem
Jan Górowski ; Adam Łomnicki
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 13 (2014), / Harvested from The Polish Digital Mathematics Library

In this paper a remarkable simple proof of the Gauss’s generalization of the Wilson’s theorem is given. The proof is based on properties of a subgroup generated by element of order 2 of a finite abelian group. Some conditions equivalent to the cyclicity of (Φ(n), ·n), where n > 2 is an integer are presented, in particular, a condition for the existence of the unique element of order 2 in such a group.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268695
@article{bwmeta1.element.doi-10_2478_aupcsm-2014-0001,
     author = {Jan G\'orowski and Adam \L omnicki},
     title = {Simple proofs of some generalizations of the Wilson's theorem},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     volume = {13},
     year = {2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0001}
}
Jan Górowski; Adam Łomnicki. Simple proofs of some generalizations of the Wilson’s theorem. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 13 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_aupcsm-2014-0001/

[1] Lin Cong, Zhipeng Li, On Wilson’s theorem and Polignac conjecture, Math. Medley 32 (2005), 11-16. (arXiv:math/0408018v1). Cited on 7.

[2] J.B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson theorem, Integers 8 (2008), A39, 15pp. Cited on 7 and 13.

[3] M. Hassani, M. Momeni-Pour, Euler type generalization of Wilson’s theorem, arXiv:math/0605705v1 28 May, 2006. Cited on 10.

[4] G.A. Miller, A new proof of the generalized Wilson’s theorem, Ann. of Math. (2) 4 (1903), 188-190. Cited on 7.