We consider (bounded) Besicovitch sets in the Heisenberg group and prove that Lp estimates for the Kakeya maximal function imply lower bounds for their Heisenberg Hausdorff dimension.
@article{bwmeta1.element.doi-10_2478_agms-2014-0013, author = {Laura Venieri}, title = {Heisenberg Hausdorff Dimension of Besicovitch Sets}, journal = {Analysis and Geometry in Metric Spaces}, volume = {2}, year = {2014}, zbl = {1303.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0013} }
Laura Venieri. Heisenberg Hausdorff Dimension of Besicovitch Sets. Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0013/
[1] J. Bourgain. Besicovitch typemaximal operators and applications to Fourier analysis. Geom. Funct. Anal., 1(2):147–187, 1991. | Zbl 0756.42014
[2] J. Bourgain. On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal., 9(2):256–282, 1999. | Zbl 0930.43005
[3] Roy O. Davies. Some remarks on the Kakeya problem. Mathematical Proceedings of the Cambridge Philosophical Society, 69:417–421, 5 1971. | Zbl 0209.26602
[4] Nets Hawk Katz and Terence Tao. Bounds on arithmetic projections, and applications to the Kakeya conjecture. Math. Res. Lett., 6(5-6):625–630, 1999.
[5] Nets Hawk Katz and Terence Tao. New bounds for Kakeya problems. J. Anal. Math., 87:231–263, 2002. Dedicated to the memory of Thomas H. Wolff. | Zbl 1027.42014
[6] Pertti Mattila. Fourier transform and Hausdorff dimension. http://wiki.helsinki.fi/display/mathstatKurssit/Fourier+ transform+and+Hausdorff+dimension%2C+spring+2014. | Zbl 1049.28007
[7] Terence Tao. The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J., 96(2):363–375, 1999. | Zbl 0980.42006
[8] Thomas Wolff. An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoamericana, 11(3):651–674, 1995. | Zbl 0848.42015