Metric Perspectives of the Ricci Flow Applied to Disjoint Unions
Sajjad Lakzian ; Michael Munn
Analysis and Geometry in Metric Spaces, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

In this paper we consider compact, Riemannian manifolds M1, M2 each equipped with a oneparameter family of metrics g1(t), g2(t) satisfying the Ricci flow equation. Adopting the characterization of super-solutions to the Ricci flow developed by McCann-Topping, we define a super Ricci flow for a family of distance metrics defined on the disjoint union M1 ⊔ M2. In particular, we show such a super Ricci flow property holds provided the distance function between points in M1 and M2 is itself a super solution of the heat equation on M1 × M2. We also discuss possible applications and examples.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268689
@article{bwmeta1.element.doi-10_2478_agms-2014-0011,
     author = {Sajjad Lakzian and Michael Munn},
     title = {Metric Perspectives of the Ricci Flow Applied to Disjoint Unions},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {2},
     year = {2014},
     zbl = {1322.53037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0011}
}
Sajjad Lakzian; Michael Munn. Metric Perspectives of the Ricci Flow Applied to Disjoint Unions. Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0011/

[1] Angenent, S. and Knopf, D., An example of neck-pinching for Ricci flow on Sn+1. Math. Res. Lett. 11 (2004), no. 4, 493-518. | Zbl 1064.58022

[2] Angenent, S. and Knopf, D., Precise asymptotics of the Ricci flow neckpinch. Comm. Anal. Geom. 15 (2007), no. 4, 773-844. | Zbl 1145.53049

[3] Angenent, S., Caputo, C., and Knopf, D. Minimally invasive surgery for Ricci flow singularities. J. Reine Angew. Math. 672 (2012), 39–87. | Zbl 1258.53066

[4] Bakry, D. and Emery, M. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp 177–206. Springer, Berlin, 1985.

[5] Böhm, C. and Wilking, B. Manifolds with positive curvature operators are space forms. Ann. of Math. (2) 167 (2008), no. 3, 1079–1097. | Zbl 1185.53073

[6] Cordero-Erausquin, D., McCann, R., and Schmuckenschläger, M. Prèkopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 4, 613–635. | Zbl 1125.58007

[7] Cordero-Erausquin, D.,McCann, R., and Schmuckenschläger, M. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), no. 2, 219–257. | Zbl 1026.58018

[8] Ethier, S.N. and Kurtz, T. G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. | Zbl 0592.60049

[9] Feldman, M., Ilmanen, T. and Knopf, D., Rotationally symmetric shrinking and expanding gradient Kahler-Ricci solitons. J. Differential Geom. 65 (2003), no. 2, 169-209. | Zbl 1069.53036

[10] Hamilton, R. Three-manifolds with positive Ricci curvature. J. Differential Geom. 17 (1982), no. 2, 255-306. | Zbl 0504.53034

[11] Hamilton, R. Four-manifolds with positive curvature operator. J. Differential Geom. 24 (1986), no. 2, 153–179. | Zbl 0628.53042

[12] Kleiner, B. and Lott, J. Singular Ricci flows I. arXiv:1408.2271v1

[math.DG].

[13] Lott, J. and Villani, C., Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009), no. 3, 903-991. | Zbl 1178.53038

[14] Topping, P. and McCann, R., Ricci flow, entropy and optimal transportation. Amer. J. Math. 132 (2010), no. 3, 711-730. | Zbl 1203.53065

[15] Perelman, G. The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159v1 [math.DG].

[16] Sesum, N., Curvature tensor under the Ricci flow. Amer. J. Math. 127 (2005), no. 6, 1315-1324. | Zbl 1093.53070

[17] Simon, M. A class of Riemannian manifolds that pinch when evolved by Ricci flow. Manuscripta Math. 101 (2000), no. 1, 89- 114. | Zbl 0969.53037

[18] Sturm, K.T. On the geometry of metric measure spaces. I. Acta Math. 196 (2006), no. 1, 65-131. | Zbl 1105.53035

[19] Sturm, K.T. On the geometry of metric measure spaces. II. Acta Math. 196 (2006), no. 1, 133-177. | Zbl 1106.53032

[20] Sturm, K.T. and von Renesse, M., Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58 (2005), no. 7, 923-940. | Zbl 1078.53028

[21] Topping, P. Lectures on the Ricci flow. London Mathematical Society Lecture Note Series, 325. Cambridge University Press, Cambridge, 2006. | Zbl 1105.58013

[22] Vuillermot, P. A generalization of Chernoff’s product formula for time-dependent operators. J. Funct. Anal. 259 (2010), no. 11, 2923-2938. | Zbl 1217.47082