In this paperwe give new existence results for complete non-orientable minimal surfaces in ℝ3 with prescribed topology and asymptotic behavior
@article{bwmeta1.element.doi-10_2478_agms-2014-0007, author = {Antonio Alarc\'on and Francisco J. L\'opez}, title = { Complete Non-Orientable Minimal Surfaces in $\mathbb{R}$ 3 and Asymptotic Behavior }, journal = {Analysis and Geometry in Metric Spaces}, volume = {2}, year = {2014}, zbl = {1304.49082}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0007} }
Antonio Alarcón; Francisco J. López. Complete Non-Orientable Minimal Surfaces in ℝ 3 and Asymptotic Behavior . Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0007/
[1] A. Alarcón, Compact complete minimal immersions in R3, Trans. Amer. Math. Soc., 362 (2010), pp. 4063-4076. | Zbl 1196.53006
[2] A. Alarcón, Compact complete proper minimal immersions in strictly convex bounded regular domains of R3, AIP Conference Proceedings, 1260 (2010), pp. 105-111.
[3] A. Alarcón and F. J. López, Approximation theory for non-orientable minimal surfaces and applications. Preprint 2013, arXiv:1307.2399 (to appear in Geom. Topol.). | Zbl 1314.49026
[4] A. Alarcón and F. J. López, Properness of associated minimal surfaces. Trans. Amer. Math. Soc., in press. | Zbl 1298.53011
[5] A. Alarcón and F. J. López, Minimal surfaces in R3 properly projecting into R2, J. Di_erential Geom., 90 (2012), pp. 351-381. | Zbl 1252.53005
[6] A. Alarcón and F. J. López, Compact complete null curves in Complex 3-space, Israel J. Math., 195 (2013), pp. 97-122. | Zbl 1288.53050
[7] A. Alarcón and F. J. López, Null curves in C3 and Calabi-Yau conjectures, Math. Ann., 355 (2013), pp. 429-455.[WoS] | Zbl 1269.53061
[8] A. Alarcón and N. Nadirashvili, Limit sets for complete minimal immersions, Math. Z., 258 (2008), pp. 107-113.[WoS] | Zbl 1167.53007
[9] L. Ferrer, F. Martín, and W. H. Meeks, III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math., 231 (2012), pp. 378-413.[WoS] | Zbl 1246.53006
[10] F. Martín and N. Nadirashvili, A Jordan curve spanned by a complete minimal surface, Arch. Ration. Mech. Anal., 184 (2007), pp. 285-301.[WoS] | Zbl 1114.49039
[11] W. H. Meeks, III, The classi_cation of complete minimal surfaces in R3 with total curvature greater than −8_, Duke Math. J., 48 (1981), pp. 523-535.
[12] W. H. Meeks, III and S. T. Yau, The classical Plateau problemand the topology of three-dimensionalmanifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology, 21 (1982), pp. 409-442. | Zbl 0489.57002
[13] H. Minkowski, Volumen und Oberfläche, Math. Ann., 57 (1903), pp. 447-495.
[14] N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces, Invent. Math., 126 (1996), pp. 457-465. | Zbl 0881.53053
[15] R. Schoen and S. T. Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge, MA, 1997. | Zbl 0886.53004