Nonexistence Results for Semilinear Equations in Carnot Groups
Fausto Ferrari ; Andrea Pinamonti
Analysis and Geometry in Metric Spaces, Tome 1 (2013), p. 130-146 / Harvested from The Polish Digital Mathematics Library

In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267347
@article{bwmeta1.element.doi-10_2478_agms-2013-0001,
     author = {Fausto Ferrari and Andrea Pinamonti},
     title = {Nonexistence Results for Semilinear Equations in Carnot Groups},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {1},
     year = {2013},
     pages = {130-146},
     zbl = {1258.35197},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2013-0001}
}
Fausto Ferrari; Andrea Pinamonti. Nonexistence Results for Semilinear Equations in Carnot Groups. Analysis and Geometry in Metric Spaces, Tome 1 (2013) pp. 130-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2013-0001/

L. Ambrosio, B. Kleiner, E. Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: Existence of a tangent hyperplane, J. Geom. Anal. 19, 509-540 (2009) [WoS] | Zbl 1187.28008

C. Bellettini, E. Le Donne, Regularity of sets with constant horizontal normal in the Engel group, to appear on Communications in Analysis and Geometry. | Zbl 1281.53037

I. Birindelli, F. Ferrari, E. Valdinoci, Semilinear PDEs in the Heisenberg group: the role of the right invariant vector fields, Nonlinear Anal. 72,987-997 (2010) | Zbl 1185.35307

I. Birindelli, E. Lanconelli, A negative answer to a one-dimensional symmetry problem in the Heisenberg group, Calc. Var. PDE 18, 357-372 (2003) | Zbl 1290.35038

I. Birindelli, J. Prajapat, Monotonicity results for Nilpotent stratified groups, Pacific J. Math 204, 1-17 (2002) | Zbl 1158.35305

A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics, (2007) | Zbl 1128.43001

L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser (2006). | Zbl 1138.53003

W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordung, Math. Annalen 117, 98-105 (1939). | Zbl 65.0398.01

D. Danielli, N. Garofalo, D. M. Nhieu, Sub-Riemannian calculus on hypersurfaces in Carnot groups, Adv. Math. 215, 292-378 (2007). [WoS] | Zbl 1129.53017

A. Farina, Propriétés qualitatives de solutions d’équations et systèmes d’équations non-linéaires. Habilitation à diriger des recherches, Paris VI (2002).

A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, 741-791 (2008). | Zbl 1180.35251

A. Farina, E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. In: Du, Y., Ishii, H., Lin, W.-Y. (eds.), Recent Progress on Reaction Diffusion System and Viscosity Solutions. Series on Advances in Mathematics for Applied Sciences, 372 World Scientific, Singapore (2008). | Zbl 1183.35137

F. Ferrari, E. Valdinoci, A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems, Math. Annalen 343, 351-370 (2009). [WoS] | Zbl 1173.35057

F. Ferrari, E. Valdinoci, Geometric PDEs in the Grushin plane: weighted inequalities and flatness of level sets, Int. Math. Res. Not. IMRN 22, 4232-4270 (2009). | Zbl 1186.35031

F. Ferrari, E. Valdinoci, Some weighted Poincaré inequalities, Indiana Univ. Math. J. 58, 1619-1637 (2009). | Zbl 1179.35121

B. Franchi, R. Serapioni, F. Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13, 421-466 (2003). | Zbl 1064.49033

N. Garofalo, E. Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41, 71-98 (1992). | Zbl 0793.35037

M. Gromov, Carnot-Carathéodory spaces seen from within, in Subriemannian Geometry, Progress in Mathematics, 144, Bellaiche, A. and Risler, J., Eds., Birkäuser Verlang, Basel 1996. | Zbl 0864.53025

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967). | Zbl 0156.10701

M. Marchi, Rectifiability of sets of finite perimeter in a class of Carnot groups of arbitrary step available at http://arxiv.org/pdf/1201.3277v1.pdf.

R. Montgomery, A tour of Subriemannian geometries, their geodesics and applications, mathematical surveys and monographs, 91, Amer. Math. Soc., Providence 2002. | Zbl 1044.53022

R. Monti, Distances, boundaries and surface measures in Carnot-Carathéodory spaces, UTM PhDTS, Department of Mathematics, University of Trento (2001), available at http://www.math.unipd.it/ monti/pubblicazioni.html. | Zbl 1032.49045

A. Pinamonti, E. Valdinoci, A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group, Ann. Acad. Sci. Fenn. Math. 37, 357-373 (2012). [WoS] | Zbl 06114361

P. Sternberg, K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503, 63-85 (1998). | Zbl 0967.53006

P. Sternberg, K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal. 141, 375-400 (1998). | Zbl 0911.49025