Conformal Geometry and the Composite Membrane Problem
Sagun Chanillo
Analysis and Geometry in Metric Spaces, Tome 1 (2013), p. 31-35 / Harvested from The Polish Digital Mathematics Library

We show that a certain eigenvalue minimization problem in two dimensions for the Laplace operator in conformal classes is equivalent to the composite membrane problem. We again establish such a link in higher dimensions for eigenvalue problems stemming from the critical GJMS operators. New free boundary problems of unstable type arise in higher dimensions linked to the critical GJMS operator. In dimension four, the critical GJMS operator is exactly the Paneitz operator.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:266809
@article{bwmeta1.element.doi-10_2478_agms-2012-0002,
     author = {Sagun Chanillo},
     title = {Conformal Geometry and the Composite Membrane Problem},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {1},
     year = {2013},
     pages = {31-35},
     zbl = {1258.35209},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2012-0002}
}
Sagun Chanillo. Conformal Geometry and the Composite Membrane Problem. Analysis and Geometry in Metric Spaces, Tome 1 (2013) pp. 31-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2012-0002/

Baum, H. and Juhl, A : Conformal Differential Geometry: Q-Curvature and Conformal Holonomy, Oberwolfach Seminars 40, 2010, Birkhäuser Verlag. [WoS]

Blank, Ivan: Eliminating Mixed Asymptotics in Obstacle Type Free Boundary Problems, Comm. in PDE 29 (2004), 1167-1186; | Zbl 1082.35165

Chang, S.-Y. A, and González, M. del Mar : Fractional Laplacian in Conformal Geometry, preprint.

Chanillo, S., Grieser, D., Imai, M., Kurata, K., and Ohnishi, I.: Symmetry Breaking and Other Phenomena in the Optimization of eigenvalues for Composite Membranes, Comm. in Math. Physics 214 (2000), 315-337. | Zbl 0972.49030

Chanillo, S., Grieser, D., and Kurata, K.: The Free Boundary in the Optimization of Composite Membranes, Contemporary Math. of the AMS 268 (2000), 61-81. | Zbl 0988.35124

Chanillo, S., and Kenig, C.: Weak Uniqueness and Partial Regularity in the Composite Membrane problem, J. European Math. Soc. 10 (2008), 705-737. | Zbl 1154.35096

Chanillo, S., Kenig, C., and To, T. : Regularity of the Minimizers in the Composite Membrane Problem in R2, J. Functional Analysis, 255 (2008), 2299-2320. | Zbl 1154.49026

Fradkin, E.S. and Tseytlin, A. A., One loop β-functions in Conformal Supergravities, Nucl. Physics B, 203, (1982), 157-178.

Fradkin, E.S. and Tseytlin, A. A., Asymptotic Freedom in Extended Conformal Supergravities, Physics Letters B, 110B (2), (1982), 117-122.

Graham, C. R., Jenne, R., Mason, L. J., and Sparling, G. A. J., : Conformally Invariant Powers of the Laplacian I. Existence, J. London Math. Soc. 46(2), (1992), 557-565. | Zbl 0726.53010

Graham, C. R., and Zworski, M. : Scattering Matrix in Conformal Geometry, Inventiones Math., 152, (2003), 89-118. | Zbl 1030.58022

Lieb, L. and Loss, M. : Analysis, Graduate Studies in Mathematics 14, (1997) American Math. Society, Providence RI.

Monneau, R. and Weiss, G. S. : An unstable elliptic free boundary problem arising in solid combustion, Duke Math. J. 136 (2007), 321–341. | Zbl 1119.35123

Shahgholian, H. : The Singular Set for the Composite Membrane problem, Comm. in Math. Physics 217 (2007), 93-101. [WoS] | Zbl 1157.35125