On almost cosymplectic (−1, μ, 0)-spaces
Piotr Dacko ; Zbigniew Olszak
Open Mathematics, Tome 3 (2005), p. 318-330 / Harvested from The Polish Digital Mathematics Library

In our previous paper, almost cosymplectic (κ, μ, ν)-spaces were defined as the almost cosymplectic manifolds whose structure tensor fields satisfy a certain special curvature condition. Amongst other results, it was proved there that any almost cosymplectic (κ, μ, ν)-space can be 𝒟 -homothetically deformed to an almost cosymplectic −1, μ′, 0)-space. In the present paper, a complete local description of almost cosymplectic (−1, μ, 0)-speces is established: “models” of such spaces are constructed, and it is noted that a given almost cosymplectic (−1, μ 0)-space is locally isomorphic to a corresponding model. In the case when μ is constant, the models can be constructed on the whole of ℝ2n+1 and it is shown that they are left invariant with respect to Lie group actions.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268912
@article{bwmeta1.element.doi-10_2478_BF02479207,
     author = {Piotr Dacko and Zbigniew Olszak},
     title = {On almost cosymplectic (-1, m, 0)-spaces},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {318-330},
     zbl = {1114.53028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479207}
}
Piotr Dacko; Zbigniew Olszak. On almost cosymplectic (−1, μ, 0)-spaces. Open Mathematics, Tome 3 (2005) pp. 318-330. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479207/

[1] D.E. Blair: Riemannian geometry of contact and symplectic manifolds, Progress in Math., Vol. 203, Birkhäuser, Boston, 2001.

[2] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou: “Contact metric manifolds satisfying a nullity condition”, Israel. J. Math., Vol. 91, (1995), pp. 189–214. | Zbl 0837.53038

[3] E. Boeckx: “A full classification of contact metric (κ, μ)-spaces”, Ill. J. Math., Vol. 44, (2000), pp. 212–219. | Zbl 0969.53019

[4] D. Chinea, M. de León and J.C. Marrero: “Stability of invariant foliations on almost contact manifolds”, Publ. Math. Debrecen, Vol. 43, (1993), pp. 41–52. | Zbl 0798.53032

[5] D. Chinea and C. Gonzáles: An example of an almost cosymplectic homogeneous manifold, Lec. Notes Math., Vol. 1209, Springer, Berlin, 1986, pp. 133–142.

[6] L.A. Cordero, M. Fernández and M. De León: “Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures”, Atti Sem. Mat. Fis. Univ. Modena, Vol. 34, (1985–86) pp. 43–54. | Zbl 0616.53032

[7] P. Dacko: “On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution”, Balkan. J. Geom. Appl., Vol. 5(2), (2000), pp. 47–60. | Zbl 0981.53075

[8] P. Dacko and Z. Olszak: “On conformally flat almost cosymplectic manifolds with Kählerian leaves”, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 56, (1998), pp. 89–103. | Zbl 0981.53074

[9] P. Dacko and Z. Olszak: “On almost cosymplectic (κ, μ, ν)-spaces”, in print. | Zbl 1114.53028

[10] H. Endo: “On some properties of almost cosymplectic manifolds”, An. §tiint. Univ. “Al. I. Cuza” Ia§i, Mat., Vol. 42, (1996), pp. 79–94.

[11] H. Endo: “On some invariant submanifolds in certain almost cosymplectic manifolds”, An. §tiint. Univ. “Al. I. Cuza” Ia§i, Mat., Vol. 43, (1997), pp. 383–395.

[12] H. Endo: “Non-existence of almost cosymplectic manifolds satisfying a certain condition”, Tensor N. S., Vol. 63, (2002), pp. 272–284. | Zbl 1119.53316

[13] S.I. Goldberg and K. Yano: “Integrability of almost cosymplectic structure”, Pacific J. Math., Vol. 31, (1969), pp. 373–382. | Zbl 0185.25104

[14] Z. Olszak: “On almost cosymplectic manifolds”, Kodai Math. J., Vol. 4, (1981), pp. 239–250. http://dx.doi.org/10.2996/kmj/1138036371 | Zbl 0451.53035

[15] Z. Olszak: “Curvature properties of quasi-Sasakian manifolds”, Tensor N.S., Vol. 38, (1982), pp. 19–28. | Zbl 0507.53031

[16] Z. Olszak: “Almost cosymplectic manifolds with Kählerian leaves”, Tensor N.S., Vol. 46, (1987), pp. 117–124. | Zbl 0631.53027

[17] S. Tanno: “Ricci curvatures of contact Riemannian manifolds”, Tôhoku Math. J., Vol. 40, (1988), pp. 441–448. | Zbl 0655.53035