On the bochner conformal curvature of Kähler-Norden manifolds
Karina Olszak
Open Mathematics, Tome 3 (2005), p. 309-317 / Harvested from The Polish Digital Mathematics Library

Using the one-to-one correspondence between Kähler-Norden and holomorphic Riemannian metrics, important relations between various Riemannian invariants of manifolds endowed with such metrics were established in my previous paper [19]. In the presented paper, we prove that there is a strict relation between the holomorphic Weyl and Bochner conformal curvature tensors and similarly their covariant derivatives are strictly related. Especially, we find necessary and sufficient conditions for the holomorphic Weyl conformal curvature tensor of a Kähler-Norden manifold to be holomorphically recurrent.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268784
@article{bwmeta1.element.doi-10_2478_BF02479206,
     author = {Karina Olszak},
     title = {On the bochner conformal curvature of K\"ahler-Norden manifolds},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {309-317},
     zbl = {1119.53024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479206}
}
Karina Olszak. On the bochner conformal curvature of Kähler-Norden manifolds. Open Mathematics, Tome 3 (2005) pp. 309-317. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479206/

[1] A. Borowiec, M. Ferraris, M. Francaviglia and I. Volovich: “Almost-complex and almost-product Einstein manifolds from a variational principle”, J. Math. Physics, Vol. 40(7), (1999), pp. 3446–3464. http://dx.doi.org/10.1063/1.532899 | Zbl 0977.53042

[2] A. Borowiec, M. Francaviglia and I. Volovich: “Anti-Kählerian manifolds”, Diff. Geom. Appl., Vol. 12, (2000), pp. 281–289. http://dx.doi.org/10.1016/S0926-2245(00)00017-6 | Zbl 0972.53043

[3] E.J. Flaherty, Jr.: “The nonlinear gravitation in interaction with a photon”, General Relativity and Gravitation, Vol. 9(11), (1978), pp. 961–978. http://dx.doi.org/10.1007/BF00784657 | Zbl 0411.53014

[4] A. Derdziński: “On homogeneous conformally symmetric pseudo-Riemannian manifolds”, Colloq. Math., Vol. 40, (1978), pp. 167–185. | Zbl 0418.53014

[5] A. Derdziński: “The local structure of essentially conformally symmetric manifolds with constant fundamental function, I. The elliptic case, II. The hyperbolic case, III. The parabolic case”, Colloq. Math., Vol. 42, (1979), pp. 59–81; Vol. 44, (1981), pp. 77–95; Vol. 44, (1981), pp. 249–262. | Zbl 0439.53034

[6] G.T. Ganchev and A.V. Borisov: “Note on the almost complex manifolds with Norden metric”, Compt. Rend. Acad. Bulg. Sci., Vol. 39, (1986), pp. 31–34. | Zbl 0608.53031

[7] G.T. Ganchev, K. Gribachev and V. Mihova: “B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric”, Publ. Inst. Math., Vol. 42(56), (1987), pp. 107–121. | Zbl 0638.53021

[8] G. Ganchev and S. Ivanov: “Connections and curvatures on complex Riemannian manifolds”, Internal Report, No. IC/91/41, International Centre for Theoretical Physics, Trieste, Italy, 1991. | Zbl 0795.53065

[9] G.T. Ganchev and S. Ivanov: “Characteristic curvatures on complex Riemannian manifolds”, Riv. Math. Univ. Parma (5), Vol. 1, (1992), pp. 155–162. | Zbl 0795.53065

[10] S. Ivanov: “Holomorphically projective transformations on complex Riemannian manifold”, J. Geom., Vol. 49, (1994), pp. 106–116. http://dx.doi.org/10.1007/BF01228055 | Zbl 0823.53052

[11] S. Kobayashi and K. Nomizu: Foundations of differential geometry, Vol. I, II, Interscience Publishers, New York, 1963, 1969. | Zbl 0119.37502

[12] C.R. LeBrun: “H-space with a cosmological constant”, Proc. Roy. Soc. London, Ser. A, Vol. 380, (1982), pp. 171–185. http://dx.doi.org/10.1098/rspa.1982.0035

[13] C. LeBrun: “Spaces of complex null geodesics in complex-Riemannian geometry”, Trans. Amer. Math. Soc., Vol. 278, (1983), pp. 209–231. http://dx.doi.org/10.2307/1999312 | Zbl 0562.53018

[14] Z. Olszak: “On conformally recurrent manifolds, II. Riemann extensions”, Tensor N.S., Vol. 49, (1990), pp. 24–31. | Zbl 0841.53034

[15] W. Roter: “On a class of conformally recurrent manifolds”, Tensor N.S., Vol. 39, (1982), pp. 207–217. | Zbl 0518.53018

[16] W. Roter: “On the existence of certain conformally recurrent metrics”, Colloq. Math., Vol. 51, (1987), pp. 315–327. | Zbl 0622.53012

[17] K. Sluka: “On Kähler manifolds with Norden metrics”, An. Stiint. Univ. “Al.I. Cuza” Ia§i, Ser. Ia Mat., Vol. 47 (2001), pp. 105–122.

[18] K. Sluka: “Properties of the Weyl conformal curvature of Kähler-Norden manifolds”, In: Steps in Differental Geometry (Proc. Colloq. Diff. Geom. July 25–30, 2000), Debrecen, 2001, pp. 317–328.

[19] K. Sluka: “On the curvature of Kähler-Norden manifolds”, J. Geom. Physics, (2004), in print.

[20] Y.C. Wong: “Linear connexions with zero torsion and recurrent curvature”, Trans. Amer. Math. Soc., Vol. 102, (1962), pp. 471–506. http://dx.doi.org/10.2307/1993618 | Zbl 0139.39702

[21] N. Woodhouse: “The real geometry of complex space-times”, Int. J. Theor. Phys., Vol. 16, (1977), pp. 663–670. http://dx.doi.org/10.1007/BF01812224 | Zbl 0385.53035