Loading [MathJax]/extensions/MathZoom.js
A Newton-Kantorovich-SOR type theorem
Béla Finta
Open Mathematics, Tome 3 (2005), p. 282-293 / Harvested from The Polish Digital Mathematics Library

In this paper we propose a new method for solving nonlinear systems of equations in finite dimensional spaces, combining the Newton-Raphson's method with the SOR idea. For the proof we adapt Kantorovich's demonstration given for the Newton-Raphson's method. As applications we reobtain the classical Newton-Raphson's method and the author's Newton-Kantorovich-Seidel type result.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268904
@article{bwmeta1.element.doi-10_2478_BF02479204,
     author = {B\'ela Finta},
     title = {A Newton-Kantorovich-SOR type theorem},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {282-293},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479204}
}
Béla Finta. A Newton-Kantorovich-SOR type theorem. Open Mathematics, Tome 3 (2005) pp. 282-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479204/

[1] N.S. Bahvalov: Numerical Methods, Technical Press, Budapest, 1977 (in Hungarian).

[2] R.G. Douglas: Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972. | Zbl 0247.47001

[3] B. Finta: “Note about the iterative solutions of the nonlinear operator equations in finite dimensional spaces”, Research Seminars, Department of Mathematics, Technical University of Tg.Mures. Romania, Vol. 3, (1994), pp. 49–79.

[4] B. Finta: “Note about a method for solving nonlinear system of equations in finite dimensional spaces”, Studia Univ. Babes-Bolyai, Romania, Mathematica, XL, Vol. 1, (1995), pp. 59–64.

[5] B. Finta: “A Newton-Kantorovich-Seidel Type Theorem”, Publ. Univ. of Miskolc, Series D. natural Sciences, Hungary, Vol. 38, (1998), pp. 31–40. | Zbl 0924.65041

[6] L.V. Kantorovich and G.P. Akilov: Functional Analysis in Normed Spaces, Academic Press, New York, 1978.

[7] J. Ortega and W. Rheinboldt: Local and global convergence of generalized linear iterations, Numerical solution of nonlinear problems, Soc. Ind. Appl. Math., Philadelphia, 1970. | Zbl 0224.65017

[8] F. Szidarovszky and S. Yakowitz: Principles and Procedures of Numerical Analysis, Plenum Press, New York and London, 1978.

[9] V.A. Wertheim: “On the conditions for the application of Newton's method”, D.A.N., Vol. 110, (1956), pp. 719–722. | Zbl 0072.13601