We calculate the homology and the cycles in tensor products of algebras of symmetric function over ℤ2
@article{bwmeta1.element.doi-10_2478_BF02479201, author = {Karl Dovermann and Jason Hanson}, title = {Tensor products of symmetric functions over $\mathbb{Z}$2}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {251-259}, zbl = {1106.13015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479201} }
Karl Dovermann; Jason Hanson. Tensor products of symmetric functions over ℤ2. Open Mathematics, Tome 3 (2005) pp. 251-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479201/
[1] A. Borel: Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Mathematics, Vol. 36, Springer Verlag, Berlin, Heidelberg, New York, 1967. | Zbl 0158.20503
[2] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Ergebnisse der Mathematik, Vol. 33, Springer Verlag, Berlin-Heidelberg-New York, 1964. | Zbl 0125.40103
[3] K.H. Dovermann and A.G. Wasserman: Algebraic Realization for Cyclic Group Actions with one Isotropy Type, preprint.
[4] K.H. Dovermann et al: Algebraic Realization for cyclic group actions, in preparation.
[5] J.S. Hanson: Bordism and Algebraic Realization, Thesis (PhD.), University of Hawaii at Manoa, 1998.
[6] C. Kosniowski: Actions of Finite Abelian Groups, Resarch Notes in Mathematics, Vol. 18, Pitman, London-San Francisco-Melbourne, 1978.
[7] J.-P. Serre: “Cohomologie modulo 2 des complexes d'Eilenberg-MacLane”, Comm. Math. Helv., Vol. 27, (1953), pp. 198–232. | Zbl 0052.19501
[8] R.E. Stong: “Unoriented Bordism and Actions of Finite Groups”, Memoirs of the Amer. Math. Soc., Vol. 103, (1970). | Zbl 0201.25504