Tensor products of symmetric functions over ℤ2
Karl Dovermann ; Jason Hanson
Open Mathematics, Tome 3 (2005), p. 251-259 / Harvested from The Polish Digital Mathematics Library

We calculate the homology and the cycles in tensor products of algebras of symmetric function over ℤ2

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268852
@article{bwmeta1.element.doi-10_2478_BF02479201,
     author = {Karl Dovermann and Jason Hanson},
     title = {Tensor products of symmetric functions over $\mathbb{Z}$2},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {251-259},
     zbl = {1106.13015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479201}
}
Karl Dovermann; Jason Hanson. Tensor products of symmetric functions over ℤ2. Open Mathematics, Tome 3 (2005) pp. 251-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479201/

[1] A. Borel: Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Mathematics, Vol. 36, Springer Verlag, Berlin, Heidelberg, New York, 1967. | Zbl 0158.20503

[2] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Ergebnisse der Mathematik, Vol. 33, Springer Verlag, Berlin-Heidelberg-New York, 1964. | Zbl 0125.40103

[3] K.H. Dovermann and A.G. Wasserman: Algebraic Realization for Cyclic Group Actions with one Isotropy Type, preprint.

[4] K.H. Dovermann et al: Algebraic Realization for cyclic group actions, in preparation.

[5] J.S. Hanson: Bordism and Algebraic Realization, Thesis (PhD.), University of Hawaii at Manoa, 1998.

[6] C. Kosniowski: Actions of Finite Abelian Groups, Resarch Notes in Mathematics, Vol. 18, Pitman, London-San Francisco-Melbourne, 1978.

[7] J.-P. Serre: “Cohomologie modulo 2 des complexes d'Eilenberg-MacLane”, Comm. Math. Helv., Vol. 27, (1953), pp. 198–232. | Zbl 0052.19501

[8] R.E. Stong: “Unoriented Bordism and Actions of Finite Groups”, Memoirs of the Amer. Math. Soc., Vol. 103, (1970). | Zbl 0201.25504