The paper presents a simple proof of Proposition 8 of [2], based on a new and simple description of isometries between CD 0-spaces.
@article{bwmeta1.element.doi-10_2478_BF02479199, author = {Zafer Ercan}, title = {A simple proof of a result of Abramovich and Wickstead}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {242-244}, zbl = {1123.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479199} }
Zafer Ercan. A simple proof of a result of Abramovich and Wickstead. Open Mathematics, Tome 3 (2005) pp. 242-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479199/
[1] Y.A. Abramovich and A.W. Wickstead: “Remarkable classes of unitial AM-spaces”, J. of Math. Analysis and Appl., Vol. 180, (1993), pp. 398–411. http://dx.doi.org/10.1006/jmaa.1993.1408 | Zbl 0792.46004
[2] Y.A. Abramovich and A.W. Wickstead: “A Banach-Stone Theorem for a New Class of Banach Spaces”, Indiana University Mathematical Journal, Vol. 45, (1996), pp. 709–720. | Zbl 0885.46014
[3] C.D. Aliprantis and O. Burkinshaw: Positive operators, Academic Press, New York, London, 1985.
[4] S. Alpay and Z. Ercan: “ CD 0(K, E) and CD w(K, E) spaces as Banach lattices”, Positivity, Vol. 3, (2000), pp. 213–225. http://dx.doi.org/10.1023/A:1009878527795
[5] Z. Ercan: “A concrete desription of CD 0(K)-spacesas C(X)-spaces and its applications”, Proc. Amer. Math. Soc., Vol. 132, (2004), pp. 1761–1763. http://dx.doi.org/10.1090/S0002-9939-03-07235-6 | Zbl 1050.46022
[6] V.G. Troitsky: “On CD 0(K)-spaces”, Vladikavkaz Mathematical Journal, Vo. 6(1), (2004), pp. 71–73. | Zbl 1096.46507