Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of . If E *(t)=E(t)-2πΔ*(t/2π) with , then we obtain and It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of .
@article{bwmeta1.element.doi-10_2478_BF02479196, author = {Aleksandar Ivi\'c}, title = {On the riemann zeta-function and the divisor problem II}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {203-214}, zbl = {1132.11343}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479196} }
Aleksandar Ivić. On the riemann zeta-function and the divisor problem II. Open Mathematics, Tome 3 (2005) pp. 203-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479196/
[1] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027 | Zbl 0036.18603
[2] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462. | Zbl 0394.10020
[3] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.
[4] M.N. Huxley: “Exponential sums and lattice points III”, Proc. London Math. Soc., Vol. 387, (2003), pp. 591–609. http://dx.doi.org/10.1112/S0024611503014485 | Zbl 1065.11079
[5] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990 | Zbl 0489.10045
[6] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985; 2nd Ed., Dover, Mineola, New York, 2003.
[7] A. Ivić: The mean values of the Riemann zeta-function, LNs, Vol. 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.
[8] A. Ivić: “On the Riemann zeta-function and the divisor problem”, Central European J. Math., Vol. 2 (4), (2004), pp. 1–15.
[9] A. Ivić and P. Sargos: “On the higher moments of the error term in the divisor problem”, to appear. | Zbl 1234.11129
[10] M. Jutila: “Riemann's zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; “Riemann's zeta-function and the divisor problem II”, Arkiv Mat., Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301 | Zbl 0513.10040
[11] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math., in press. | Zbl 1165.11067