On the riemann zeta-function and the divisor problem II
Aleksandar Ivić
Open Mathematics, Tome 3 (2005), p. 203-214 / Harvested from The Polish Digital Mathematics Library

Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of ζ12+it . If E *(t)=E(t)-2πΔ*(t/2π) with Δ*x+2Δ2x-12Δ4x , then we obtain 0TE*t5dtεT2+ε and 0TE*t54475dtεT601225+ε. It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of ζ12+it .

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268775
@article{bwmeta1.element.doi-10_2478_BF02479196,
     author = {Aleksandar Ivi\'c},
     title = {On the riemann zeta-function and the divisor problem II},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {203-214},
     zbl = {1132.11343},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479196}
}
Aleksandar Ivić. On the riemann zeta-function and the divisor problem II. Open Mathematics, Tome 3 (2005) pp. 203-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479196/

[1] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027 | Zbl 0036.18603

[2] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462. | Zbl 0394.10020

[3] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.

[4] M.N. Huxley: “Exponential sums and lattice points III”, Proc. London Math. Soc., Vol. 387, (2003), pp. 591–609. http://dx.doi.org/10.1112/S0024611503014485 | Zbl 1065.11079

[5] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990 | Zbl 0489.10045

[6] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985; 2nd Ed., Dover, Mineola, New York, 2003.

[7] A. Ivić: The mean values of the Riemann zeta-function, LNs, Vol. 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.

[8] A. Ivić: “On the Riemann zeta-function and the divisor problem”, Central European J. Math., Vol. 2 (4), (2004), pp. 1–15.

[9] A. Ivić and P. Sargos: “On the higher moments of the error term in the divisor problem”, to appear. | Zbl 1234.11129

[10] M. Jutila: “Riemann's zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; “Riemann's zeta-function and the divisor problem II”, Arkiv Mat., Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301 | Zbl 0513.10040

[11] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math., in press. | Zbl 1165.11067