On the weak non-defectivity of veronese embeddings of projective spaces
Edoardo Ballico
Open Mathematics, Tome 3 (2005), p. 183-187 / Harvested from The Polish Digital Mathematics Library

Fix integers n, x, k such that n≥3, k>0, x≥4, (n, x)≠(3, 4) and k(n+1)<(nn+x). Here we prove that the order x Veronese embedding ofP n is not weakly (k−1)-defective, i.e. for a general S⊃P n such that #(S) = k+1 the projective space | I 2S (x)| of all degree t hypersurfaces ofP n singular at each point of S has dimension (n/n+x )−1− k(n+1) (proved by Alexander and Hirschowitz) and a general F∈| I 2S (x)| has an ordinary double point at each P∈ S and Sing (F)=S.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268907
@article{bwmeta1.element.doi-10_2478_BF02479194,
     author = {Edoardo Ballico},
     title = {On the weak non-defectivity of veronese embeddings of projective spaces},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {183-187},
     zbl = {1106.14040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479194}
}
Edoardo Ballico. On the weak non-defectivity of veronese embeddings of projective spaces. Open Mathematics, Tome 3 (2005) pp. 183-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479194/

[1] J. Alexander: “Singularités imposables en position générale aux hypersurfaces de ℙn”, Compositio Math., Vol. 68, (1988), pp. 305–354.

[2] J. Alexander and A. Hirschowitz: “Un lemme d'Horace différentiel: application aux singularité hyperquartiques de ℙ5”, J. Algebraic Geom., Vol. 1, (1992), pp. 411–426.

[3] J. Alexander and A. Hirschowitz: “La méthode d'Horace éclaté: application à l'interpolation en degré quatre”, Invent. Math., Vol. 107, (1992), pp. 585–602. http://dx.doi.org/10.1007/BF01231903

[4] J. Alexander and A. Hirschowitz: “Polynomial interpolation in several variables”, J. Algerraic Geom., Vol. 4, (1995), pp. 201–222. | Zbl 0829.14002

[5] J. Alexander and A. Hirschowitz: “An asymptotic vanishing theorem for generic unions of multiple points”, Invent. Math., Vol. 140, (2000), pp. 303–325. http://dx.doi.org/10.1007/s002220000053 | Zbl 0973.14026

[6] K. Chandler: “A brief proof of a maximal rank theorem for generic double points in projective space”, Trans. Amer. Math. Soc., Vol. 353(5), (2000), pp. 1907–1920. http://dx.doi.org/10.1090/S0002-9947-00-02732-X | Zbl 0969.14025

[7] L. Chiantini and C. Ciliberto: “Weakly defective varieties”, Trans. Amer. Math. Soc., Vol. 454(1), (2002), pp. 151–178. http://dx.doi.org/10.1090/S0002-9947-01-02810-0 | Zbl 1045.14022

[8] C. Ciliberto: “Geometric aspects of polynomial interpolation in more variables and of Waring's problem”, In European Congress of Mathematics (Barcelona, 2000), Progress in Math., Vol. 201, Birkhäuser, Basel 2001, pp. 289–316. | Zbl 1078.14534

[9] C. Ciliberto and A. Hirschowitz: “Hypercubique de ℙ4 avec sept points singulieres génériques”, C. R. Acad. Sci. Paris, Vol. 313(1), (1991), pp. 135–137.

[10] M. Mella: Singularities of linear systems and the Waring problem, arXiv mathAG/0406288.

[11] A. Terracini: “Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari”, Ann. Mat. Pura e Appl., Vol. 24, (1915), pp. 91–100. | Zbl 45.0239.01