Let E Aff(Γ,G, m) be the set of affine equivalence classes of m-dimensional complete flat manifolds with a fixed fundamental group Γ and a fixed holonomy group G. Let n be the dimension of a closed flat manifold whose fundamental group is isomorphic to Γ. We describe E Aff(Γ,G, m) in terms of equivalence classes of pairs (ε, ρ), consisting of epimorphisms of Γ onto G and representations of G in ℝm-n. As an application we give some estimates of card E Aff(Γ,G, m).
@article{bwmeta1.element.doi-10_2478_BF02476546, author = {Michal Sadowski}, title = {Affinely equivalent complete flat manifolds}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {332-338}, zbl = {1110.53026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476546} }
Michal Sadowski. Affinely equivalent complete flat manifolds. Open Mathematics, Tome 2 (2004) pp. 332-338. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476546/
[1] L. Charlap: Bieberbach groups and flat manifolds, Springer-Verlag, New York, 1986. | Zbl 0608.53001
[2] T. tom Dieck: Transformation groups, de Gruyter, Berlin, 1987.
[3] M. Sadowski: Topological structure of complete flat manifolds with cyclic holonomy groups, to appear.
[4] A. Szczepański: Aspherical manifolds with ℚ-homology of a sphere, Mathematika, Vol. 30, (1983), pp. 291–294. http://dx.doi.org/10.1112/S0025579300010561 | Zbl 0521.57019
[5] J. Wolf: Spaces of constant curvature, McGraw-Hill, 1967. | Zbl 0162.53304