Let X be a Fano variety of dimension n, pseudoindex i X and Picard number ρX. A generalization of a conjecture of Mukai says that ρX(i X−1)≤n. We prove that the conjecture holds for a variety X of pseudoindex i X≥n+3/3 if X admits an unsplit covering family of rational curves; we also prove that this condition is satisfied if ρX> and either X has a fiber type extremal contraction or has not small extremal contractions. Finally we prove that the conjecture holds if X has dimension five.
@article{bwmeta1.element.doi-10_2478_BF02476544, author = {Marco Andreatta and Elena Chierici and Gianluca Occhetta}, title = {Generalized Mukai conjecture for special Fano varieties}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {272-293}, zbl = {1068.14049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476544} }
Marco Andreatta; Elena Chierici; Gianluca Occhetta. Generalized Mukai conjecture for special Fano varieties. Open Mathematics, Tome 2 (2004) pp. 272-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476544/
[1] M. Andreatta and J.A. Wiśniewski: “On manifolds whose tangent bundle contains an ample subbundle”, Invent. Math., Vol. 146, (2001), pp. 209–217. http://dx.doi.org/10.1007/PL00005808 | Zbl 1081.14060
[2] L. Bonavero, C. Casagrande, O. Debarre and S. Druel: “Sur une conjecture de Mukai”, Comment. Math. Helv., Vol. 78, (2003), pp. 601–626. http://dx.doi.org/10.1007/s00014-003-0765-x | Zbl 1044.14019
[3] L. Bonavero, F. Campana and J.A. Wiśniewski: “Variétés complexes dont l'éclat'ee en un point est de Fano”, C.R. Math. Acad. Sci. Paris, Vol. 334, (2002), pp. 463–468. | Zbl 1036.14020
[4] F. Campana: “Connexité rationnelle des variétés de Fano”, Ann. Sci. École Norm. Sup., Vol. 25, (1992), pp. 539–545.
[5] K. Cho, Y. Miyaoka and N.I. Shepherd-Barron: “Characterizations of projective space and applications to complex symplectic manifolds”, in: Higher dimensional birational geometry (Kyoto, 1997) Adv. Stud. Pure Math., Vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1–88. | Zbl 1063.14065
[6] O. Debarre: Higher-Dimensional Algebraic Geometry, Universitext Springer-Verlag, New York, 2001.
[7] S. Kebekus: “Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron”, In: Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 147–155. | Zbl 1046.14028
[8] J. Kollár: Rational Curves on Algebraic Varieties, Ergebnisse der Math. Vol. 32, Springer-Verlag, 1996.
[9] J. Kollár, Y. Miyaoka and S. Mori: “Rational connectedness and boundedness of Fano manifolds”, J. Diff. Geom. Vol. 36, (1992), pp. 765–779. | Zbl 0759.14032
[10] S. Mori: “Projective manifolds with ample tangent bundle”, Ann. Math., Vol. 110, (1979), pp. 595–606. http://dx.doi.org/10.2307/1971241 | Zbl 0423.14006
[11] S. Mukai: “Open problems”, In: Birational geometry of algebraic varieties, Taniguchi Foundation, Katata, 1988.
[12] G. Occhetta: A characterization of products of projective spaces, preprint, February 2003, http://www.science.unitn.it/∼occhetta.
[13] J.A. Wiśniewski: “On a conjecture of Mukai”, Manuscripta Math., Vol. 68, (1990), pp. 135–141. | Zbl 0715.14033