Quasilinearization for the periodic boundary value problem for hybrid differential equation
L. Hall ; S. Hristova
Open Mathematics, Tome 2 (2004), p. 250-259 / Harvested from The Polish Digital Mathematics Library

The method of quasilinearization for a periodic boundary value problem for nonlinear hybrid differential equations is studied. It is shown that the convergence is quadratic.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268719
@article{bwmeta1.element.doi-10_2478_BF02476542,
     author = {L. Hall and S. Hristova},
     title = {Quasilinearization for the periodic boundary value problem for hybrid differential equation},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {250-259},
     zbl = {1069.34022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476542}
}
L. Hall; S. Hristova. Quasilinearization for the periodic boundary value problem for hybrid differential equation. Open Mathematics, Tome 2 (2004) pp. 250-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476542/

[1] R. Bellman and R. Kalaba: Quasilinearization and Nonlinear Boundary Value Problems, Elsivier, New York, 1965. | Zbl 0139.10702

[2] F.H. Clark, Yu.S. Ledayaev, R.I. Steru and P.R. Wolenski: Nonsmooth Analysis and Control Theory, Springer Verlag, New York, 1998.

[3] L.J. Grimm and L.M. Hall: “Differential Inequalities and Boundary Problems for Functional-Differential Equations”, In: Simposium on Ordinary Differential Equations, Lecture Notes in Mathematics, Vol. 312, Springer Verlag, Berlin, pp. 41–53.

[4] G. Ladde, V. Lakshmikantham and A. Vatsala: Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Belmonth, 1985. | Zbl 0658.35003

[5] V. Lakshmikantham, “Extension of the method of quasilinearization”, J. Optim. Theor. Applic., Vol. 82, (1994), pp. 315–321. http://dx.doi.org/10.1007/BF02191856 | Zbl 0806.34013

[6] V. Lakshmikantham and X.Z. Liu: “Impulsive hybrid systems and stability theory”, Intern. J. Nonlinear Diff. Eqns, Vol. 5, (1999), pp. 9–17.

[7] V. Lakshmikantham and S. Malek: Generalized quasilinearization, Nonlinear World, 1, (1994), 59–63. | Zbl 0799.34012

[8] V. Lakshmikantham and J.J. Nieto: “Generalized quasilinearization for nonlinear first order ordinary differential equations”, Nonlinear Times and Digest, Vol. 2, (1995), pp. 1–9. | Zbl 0855.34013

[9] V. Lakshmikantham, N. Shahzad and J.J. Nieto: “Method of generalized quasilinearization for periodic boundary value problems, Nonlinear Analysis, Vol. 27, (1996), pp. 143–151. http://dx.doi.org/10.1016/0362-546X(95)00021-M | Zbl 0855.34011

[10] V. Lakshmikantham and A.S. Vatsala: Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, 1998. | Zbl 0997.34501

[11] A. Nerode and W. Kohn: Medels in Hybrid Systems, Lecture Notes in Computer Science, Vol. 36, Springer Verlag, Berlin, 1993.